A sustainable bipolar membrane electrodialysis process for effective conversion of CO2 and NaCl brine into NaHCO3.

IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Water Science and Technology Pub Date : 2025-07-01 Epub Date: 2025-06-27 DOI:10.2166/wst.2025.085
Wei Wang, Haoxuan Li, Yue Xie, Yingying Zhao, Rihua Xiong
{"title":"A sustainable bipolar membrane electrodialysis process for effective conversion of CO<sub>2</sub> and NaCl brine into NaHCO<sub>3</sub>.","authors":"Wei Wang, Haoxuan Li, Yue Xie, Yingying Zhao, Rihua Xiong","doi":"10.2166/wst.2025.085","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change demands innovative carbon capture and utilization (CCU) strategies, yet converting captured CO<sub>2</sub> into high-value products while managing industrial waste remains elusive. Here, we demonstrate a single-step, energy-efficient bipolar membrane electrodialysis (BMED) system integrated with CCU, enabling the simultaneous conversion of NaCl brine and CO<sub>2</sub> into high-purity sodium bicarbonate (NaHCO<sub>3</sub>) with unprecedented efficiency, but without requiring external alkali sources or energy-intensive thermal regeneration steps. By optimizing key parameters - such as current density and CO<sub>2</sub> aeration rate, and gas-liquid flow ratios - we achieved a bicarbonate concentration of 1.186 mol/L in the alkaline chamber, coupled with 57.65% carbon sequestration efficiency and an energy consumption as low as 3.1 kW·h/m³ CO<sub>2</sub> (or 716.9 kW·h/t NaHCO<sub>3</sub>). This approach not only recovers valuable sodium resources from brine but also enhances CO<sub>2</sub> absorption through electrochemical mechanisms, potentially reducing global carbon emissions by up to 20% in brine-intensive industries. Our work paves the way for scalable, sustainable CCUS technologies, transforming waste streams into economic assets and advancing the fight against climate change.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"92 1","pages":"127-138"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.085","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change demands innovative carbon capture and utilization (CCU) strategies, yet converting captured CO2 into high-value products while managing industrial waste remains elusive. Here, we demonstrate a single-step, energy-efficient bipolar membrane electrodialysis (BMED) system integrated with CCU, enabling the simultaneous conversion of NaCl brine and CO2 into high-purity sodium bicarbonate (NaHCO3) with unprecedented efficiency, but without requiring external alkali sources or energy-intensive thermal regeneration steps. By optimizing key parameters - such as current density and CO2 aeration rate, and gas-liquid flow ratios - we achieved a bicarbonate concentration of 1.186 mol/L in the alkaline chamber, coupled with 57.65% carbon sequestration efficiency and an energy consumption as low as 3.1 kW·h/m³ CO2 (or 716.9 kW·h/t NaHCO3). This approach not only recovers valuable sodium resources from brine but also enhances CO2 absorption through electrochemical mechanisms, potentially reducing global carbon emissions by up to 20% in brine-intensive industries. Our work paves the way for scalable, sustainable CCUS technologies, transforming waste streams into economic assets and advancing the fight against climate change.

可持续双极膜电渗析工艺将CO2和NaCl盐水有效转化为NaHCO3。
气候变化需要创新的碳捕获和利用(CCU)策略,但将捕获的二氧化碳转化为高价值产品,同时管理工业废物仍然难以捉摸。在这里,我们展示了一种集成了CCU的单步、节能双极膜电渗析(BMED)系统,能够以前所未有的效率同时将NaCl盐水和CO2转化为高纯度的碳酸氢钠(NaHCO3),而不需要外部碱源或高能耗的热再生步骤。通过优化电流密度、CO2曝气率、气液流量比等关键参数,我们在碱性室中实现了碳酸氢盐浓度为1.186 mol/L,固碳效率为57.65%,能耗低至3.1 kW·h/m³CO2(或716.9 kW·h/t NaHCO3)。这种方法不仅可以从盐水中回收有价值的钠资源,还可以通过电化学机制提高二氧化碳的吸收,有可能将全球卤水密集型工业的碳排放量减少20%。我们的工作为可扩展、可持续的CCUS技术铺平了道路,将废物流转化为经济资产,并推进应对气候变化的斗争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信