Virendra S Gomase, Rupali Sharma, Suchita P Dhamane
{"title":"Innovative Immunoinformatics Tools for Enhancing MHC (Major Histocompatibility Complex) Class I Epitope Prediction in Immunoproteomics.","authors":"Virendra S Gomase, Rupali Sharma, Suchita P Dhamane","doi":"10.2174/0109298665373152250625054723","DOIUrl":null,"url":null,"abstract":"<p><p>Immune responses depend on the identification and prediction of peptides that bind to MHC (major histocompatibility complex) class I molecules, especially when it comes to the creation of vaccines, cancer immunotherapy, and autoimmune disorders. The ability to predict and evaluate MHC class immunoproteomics have completely transformed I epitopes in conjunction with immunoinformatics technologies. However, precisely identifying epitopes across various populations and situations is extremely difficult due to the complexity and diversity of MHC class I binding peptides. The most recent developments in immunoinformatics technology that have improved MHC class I epitope prediction are examined in this article. The sensitivity and specificity of epitope prediction have been greatly enhanced by recent developments that have concentrated on bioinformatics algorithms, artificial intelligence, and machine learning models. Potential epitopes are predicted using large-scale peptide-MHC binding data, structural characteristics, and interaction dynamics using tools like NetMHC, IEDB, and MHCflurry. Additionally, the integration of proteomic, transcriptomic, and genomic data has improved prediction accuracy in real-world scenarios by enabling more accurate identification of naturally occurring peptides. Furthermore, newer techniques like deep learning and multi-omics data integration have the potential to overcome peptide binding prediction constraints. Utilizing these technologies is expected to speed up the identification of new epitopes, improve the accuracy of immunotherapy techniques, and enable customized vaccine development. These innovative techniques, their uses, and potential future developments for improving MHC class I epitope prediction in immunoproteomics are highlighted in this study.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665373152250625054723","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune responses depend on the identification and prediction of peptides that bind to MHC (major histocompatibility complex) class I molecules, especially when it comes to the creation of vaccines, cancer immunotherapy, and autoimmune disorders. The ability to predict and evaluate MHC class immunoproteomics have completely transformed I epitopes in conjunction with immunoinformatics technologies. However, precisely identifying epitopes across various populations and situations is extremely difficult due to the complexity and diversity of MHC class I binding peptides. The most recent developments in immunoinformatics technology that have improved MHC class I epitope prediction are examined in this article. The sensitivity and specificity of epitope prediction have been greatly enhanced by recent developments that have concentrated on bioinformatics algorithms, artificial intelligence, and machine learning models. Potential epitopes are predicted using large-scale peptide-MHC binding data, structural characteristics, and interaction dynamics using tools like NetMHC, IEDB, and MHCflurry. Additionally, the integration of proteomic, transcriptomic, and genomic data has improved prediction accuracy in real-world scenarios by enabling more accurate identification of naturally occurring peptides. Furthermore, newer techniques like deep learning and multi-omics data integration have the potential to overcome peptide binding prediction constraints. Utilizing these technologies is expected to speed up the identification of new epitopes, improve the accuracy of immunotherapy techniques, and enable customized vaccine development. These innovative techniques, their uses, and potential future developments for improving MHC class I epitope prediction in immunoproteomics are highlighted in this study.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis