Jinzhao Yang , Jiang-Yun Luo , Hongyin Chen , Wai San Cheang , Juan Huang , Li Wang , Wing Tak Wong , Litao Sun , Yu Huang , Xiao Yu Tian , Yang Zhang
{"title":"Targeting endothelial SMAD4 ameliorates endothelial dysfunction in hypertensive mice","authors":"Jinzhao Yang , Jiang-Yun Luo , Hongyin Chen , Wai San Cheang , Juan Huang , Li Wang , Wing Tak Wong , Litao Sun , Yu Huang , Xiao Yu Tian , Yang Zhang","doi":"10.1016/j.yjmcc.2025.07.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Endothelial dysfunction is a key contributor to hypertension, and dysregulation of TGF-β/BMP signaling pathways exacerbates vascular pathogenesis. However, the precise role of SMAD4 in the development of vascular inflammation and dysfunction in hypertension remains poorly understood.</div></div><div><h3>Methods</h3><div>Tie2-Cre/ERT2 system was used to generate an endothelial-specific Smad4 knockout mouse. Hypertension was induced by infusion of angiotensin II (Ang II) via implanting an osmotic pump subcutaneously. Endothelium-dependent relaxations (EDRs) of various blood vessels were assessed using a wire myograph system. Gene expression in vivo and in vitro was evaluated through RNA-seq, qPCR, immunofluorescence staining, and western blotting. Nitric oxide (NO) and reactive oxygen species (ROS) production were measured using fluorescent probes under confocal microscopy.</div></div><div><h3>Results</h3><div>EC-Smad4 KO mice showed a significant reduction in Ang II-induced blood pressure elevation compared to control EC-Smad4 WT mice. EDRs in the aorta, mesenteric, and carotid arteries were markedly improved in EC-Smad4 KO mice. In the aortic endothelium, excess ROS generation and VCAM1 expression induced by Ang II were suppressed in EC-Smad4 KO mice. SMAD4 knockdown also led to diminished phosphorylation of p38 MAPK in response to Ang II, increased phosphorylated eNOS (p-eNOS) at Ser1177. Additionally, Smad4 downregulation resulted in reduced mRNA and protein levels of GRP78, ATF6, and PERK, key markers of tunicamycin-induced endoplasmic reticulum (ER) stress.</div></div><div><h3>Conclusion</h3><div>Smad4 signaling is a critical mediator of endothelial dysfunction and vascular inflammation in hypertension. Endothelial-specific deletion of Smad4 ameliorates vascular dysfunction by reducing oxidative stress, suppressing ER stress, and alleviating vascular inflammation.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"206 ","pages":"Pages 44-53"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282825001221","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Endothelial dysfunction is a key contributor to hypertension, and dysregulation of TGF-β/BMP signaling pathways exacerbates vascular pathogenesis. However, the precise role of SMAD4 in the development of vascular inflammation and dysfunction in hypertension remains poorly understood.
Methods
Tie2-Cre/ERT2 system was used to generate an endothelial-specific Smad4 knockout mouse. Hypertension was induced by infusion of angiotensin II (Ang II) via implanting an osmotic pump subcutaneously. Endothelium-dependent relaxations (EDRs) of various blood vessels were assessed using a wire myograph system. Gene expression in vivo and in vitro was evaluated through RNA-seq, qPCR, immunofluorescence staining, and western blotting. Nitric oxide (NO) and reactive oxygen species (ROS) production were measured using fluorescent probes under confocal microscopy.
Results
EC-Smad4 KO mice showed a significant reduction in Ang II-induced blood pressure elevation compared to control EC-Smad4 WT mice. EDRs in the aorta, mesenteric, and carotid arteries were markedly improved in EC-Smad4 KO mice. In the aortic endothelium, excess ROS generation and VCAM1 expression induced by Ang II were suppressed in EC-Smad4 KO mice. SMAD4 knockdown also led to diminished phosphorylation of p38 MAPK in response to Ang II, increased phosphorylated eNOS (p-eNOS) at Ser1177. Additionally, Smad4 downregulation resulted in reduced mRNA and protein levels of GRP78, ATF6, and PERK, key markers of tunicamycin-induced endoplasmic reticulum (ER) stress.
Conclusion
Smad4 signaling is a critical mediator of endothelial dysfunction and vascular inflammation in hypertension. Endothelial-specific deletion of Smad4 ameliorates vascular dysfunction by reducing oxidative stress, suppressing ER stress, and alleviating vascular inflammation.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.