{"title":"Adaptation of the living therapeutic materials concept to the immune sensing of neutrophil granulocytes.","authors":"Islam Mohamed, Kristin Burckhardt, Stefan Lohse","doi":"10.1093/jleuko/qiaf086","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are innate immune cells that perpetually patrol the circulation and tissues. They sense and migrate toward invading microbes to initiate and orchestrate a robust immune response. Their highly reactive nature, driven by multiple and redundant receptor families recognizing bacterial components, makes them particularly sensitive to contaminants or nonsterile implants. This often leads to a neutrophil-driven foreign body reaction that shields the implant and triggers inflammation, collateral tissue damage, or even sepsis. This presents a significant challenge for living therapeutic materials, an innovative biomedical approach using genetically engineered bacteria encapsulated in natural or synthetic polymers. Since bacterial turnover inevitably releases pathogen-associated molecular patterns that activate neutrophils to mitigate or prevent a potent neutrophil response, living therapeutic material design strategies are required to protect the living therapeutic material from damage while maintaining its functionality. This review focuses on current strategies involving bacterial genetic engineering, immune-shielding materials and factors, and modified hydrogel-based systems to minimize immune recognition. Engineering the bacterial chassis to produce immune tolerance-inducing metabolites from commensals, modified pathogen-associated molecular patterns, and pathogen-associated molecular pattern-cleaving autolysins may enhance biocompatibility. A crucial aspect for clinical translation is robust biocontainment to prevent bacterial escape, ensuring living therapeutic material remains a safe and effective therapeutic platform. While the potential of the living therapeutic material concept lies in the development of tailored medicine specifically designed for a specific disease and enabling local, cost-effective, site- and stimulus-responsive treatment, balancing the neutrophil immune response remains an important milestone on the path to living therapeutic material for future biomedical applications.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":"117 7","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiaf086","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neutrophils are innate immune cells that perpetually patrol the circulation and tissues. They sense and migrate toward invading microbes to initiate and orchestrate a robust immune response. Their highly reactive nature, driven by multiple and redundant receptor families recognizing bacterial components, makes them particularly sensitive to contaminants or nonsterile implants. This often leads to a neutrophil-driven foreign body reaction that shields the implant and triggers inflammation, collateral tissue damage, or even sepsis. This presents a significant challenge for living therapeutic materials, an innovative biomedical approach using genetically engineered bacteria encapsulated in natural or synthetic polymers. Since bacterial turnover inevitably releases pathogen-associated molecular patterns that activate neutrophils to mitigate or prevent a potent neutrophil response, living therapeutic material design strategies are required to protect the living therapeutic material from damage while maintaining its functionality. This review focuses on current strategies involving bacterial genetic engineering, immune-shielding materials and factors, and modified hydrogel-based systems to minimize immune recognition. Engineering the bacterial chassis to produce immune tolerance-inducing metabolites from commensals, modified pathogen-associated molecular patterns, and pathogen-associated molecular pattern-cleaving autolysins may enhance biocompatibility. A crucial aspect for clinical translation is robust biocontainment to prevent bacterial escape, ensuring living therapeutic material remains a safe and effective therapeutic platform. While the potential of the living therapeutic material concept lies in the development of tailored medicine specifically designed for a specific disease and enabling local, cost-effective, site- and stimulus-responsive treatment, balancing the neutrophil immune response remains an important milestone on the path to living therapeutic material for future biomedical applications.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.