Alexander A Semenchenko, Andrei B Krasheninnikov, Nikita A Seliverstov, Elena V Khamenkova, Kirill A Vinnikov
{"title":"How reliable is mitochondrial DNA for recovering the phylogeny of Chironomidae (Culicomorpha: Diptera)?","authors":"Alexander A Semenchenko, Andrei B Krasheninnikov, Nikita A Seliverstov, Elena V Khamenkova, Kirill A Vinnikov","doi":"10.1093/jisesa/ieaf064","DOIUrl":null,"url":null,"abstract":"<p><p>We examine mitochondrial DNA as a source of data to estimate phylogenetic relationships within the Chironomidae (Diptera). Previous studies have shown that mitogenomes often produce ambiguous phylogenetic topologies that are inconsistent with both morphological and multi-locus molecular data. In this study, we sequenced 18 new mitogenomes representing 5 subfamilies, including the first available sequence for Protanypodinae. These were combined with 65 previously annotated chironomids mitogenomes, 8 additional individuals assembled from SRA data, and 8 outgroup taxa. Phylogenetic reconstructions were performed using complete protein-coding genes (PCGs), the first and second codon positions of PCGs (PCG 12), with and without ribosomal genes (12S rDNA and 16S rDNA), and amino acid sequences (AA). Both Bayesian Inference and Maximum Likelihood approaches were implemented. Three alternative outgroup compositions were tested: (i) chironomids only, with restricted rooting on Podonominae; (ii) Ceratopogonidae and Culicidae; and (iii) a diverse selection of Culicomorpha. We found that the AA, PCG12, and PCG 12 + rDNA datasets, when coupled with the third outgroup combination, provide the strongest phylogenetic signal, with the highest effective sample size and log-likelihood scores. In most cases, the resulting tree topologieswere congruent between mitochondrial and multi-locus data. However, some consistent differences in topologies were observed, leading to differences in divergence time estimates. Our phylogenetic study indicates paraphyly of Orthocladiinae due to the positions of Brillia Kieffer and Abiskomyia Edwards, suggesting that a comprehensive integrative revision of this subfamily is required. We conclude that the reliability of the mitochondrial phylogenetic signal improves with the increased taxon sampling.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"25 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieaf064","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We examine mitochondrial DNA as a source of data to estimate phylogenetic relationships within the Chironomidae (Diptera). Previous studies have shown that mitogenomes often produce ambiguous phylogenetic topologies that are inconsistent with both morphological and multi-locus molecular data. In this study, we sequenced 18 new mitogenomes representing 5 subfamilies, including the first available sequence for Protanypodinae. These were combined with 65 previously annotated chironomids mitogenomes, 8 additional individuals assembled from SRA data, and 8 outgroup taxa. Phylogenetic reconstructions were performed using complete protein-coding genes (PCGs), the first and second codon positions of PCGs (PCG 12), with and without ribosomal genes (12S rDNA and 16S rDNA), and amino acid sequences (AA). Both Bayesian Inference and Maximum Likelihood approaches were implemented. Three alternative outgroup compositions were tested: (i) chironomids only, with restricted rooting on Podonominae; (ii) Ceratopogonidae and Culicidae; and (iii) a diverse selection of Culicomorpha. We found that the AA, PCG12, and PCG 12 + rDNA datasets, when coupled with the third outgroup combination, provide the strongest phylogenetic signal, with the highest effective sample size and log-likelihood scores. In most cases, the resulting tree topologieswere congruent between mitochondrial and multi-locus data. However, some consistent differences in topologies were observed, leading to differences in divergence time estimates. Our phylogenetic study indicates paraphyly of Orthocladiinae due to the positions of Brillia Kieffer and Abiskomyia Edwards, suggesting that a comprehensive integrative revision of this subfamily is required. We conclude that the reliability of the mitochondrial phylogenetic signal improves with the increased taxon sampling.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.