Agathe Bour, Kateryna Melnyk, Agnieszka D Hunka, Emanuela Vanacore, Annemette Palmqvist, Thanh Bui, Kristian Syberg
{"title":"How can Machine Learning inform about chemical risks in circular textiles?","authors":"Agathe Bour, Kateryna Melnyk, Agnieszka D Hunka, Emanuela Vanacore, Annemette Palmqvist, Thanh Bui, Kristian Syberg","doi":"10.1093/inteam/vjaf088","DOIUrl":null,"url":null,"abstract":"<p><p>Hazardous chemicals in textiles represent a serious health issue. This is mainly due to missing data on the used chemicals and/or on their hazard, which prevents proper chemical risk assessment. Although identifying and filling these data gaps is crucial, the myriad of chemicals used for textile production and multiple data sources make it extremely difficult to manually collect and process all the data. Here, we propose a machine learning-based approach to tackle this issue. First, we identify the relevant sources and data that can be analyzed with machine learning. Then we propose knowledge graphs as a tool to organize and analyze the data. We finally provide specific examples and detail the expected outcomes of our approach.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjaf088","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hazardous chemicals in textiles represent a serious health issue. This is mainly due to missing data on the used chemicals and/or on their hazard, which prevents proper chemical risk assessment. Although identifying and filling these data gaps is crucial, the myriad of chemicals used for textile production and multiple data sources make it extremely difficult to manually collect and process all the data. Here, we propose a machine learning-based approach to tackle this issue. First, we identify the relevant sources and data that can be analyzed with machine learning. Then we propose knowledge graphs as a tool to organize and analyze the data. We finally provide specific examples and detail the expected outcomes of our approach.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.