Influence of secretome from porcine cardiosphere-derived cells on porcine macrophage polarization and their possible implications for cardiac remodeling post-myocardial infarction in vitro.
M Pulido, M A de Pedro, A M Marchena, V Alvarez, J G Casado, F M Sanchez-Margallo, E López
{"title":"Influence of secretome from porcine cardiosphere-derived cells on porcine macrophage polarization and their possible implications for cardiac remodeling post-myocardial infarction <i>in vitro</i>.","authors":"M Pulido, M A de Pedro, A M Marchena, V Alvarez, J G Casado, F M Sanchez-Margallo, E López","doi":"10.3389/fcell.2025.1601743","DOIUrl":null,"url":null,"abstract":"<p><p>The inflammatory response plays a crucial role in tissue repair following myocardial infarction (MI), with macrophages being central regulators of inflammation and tissue remodeling. Macrophage polarization between pro-inflammatory M1 and anti inflammatory M2 phenotypes significantly influences inflammation and tissue repair. This study evaluates the effect of the secretome from porcine cardio sphere-derived cells (S-CDCs) on macrophage polarization and its downstream impact on endothelial cells (HUVECs) and cardiac fibroblasts (PCF). Macrophages were treated with the secretome from S-CDCs, and their polarization status was assessed. Conditioned media from treated macrophages were applied to HUVECs and PCFs to evaluate effects on migration, wound healing, and fibrotic activity. Additionally, transcriptomic profiling of S-CDCs was performed to identify relevant cytokines. S-CDCs induced a mixed M1/M2 phenotype in macrophages, attenuating M1-associated inflammation without fully promoting M2 characteristics. Conditioned medium from S-CDC-treated M1 macrophages enhanced migration and wound healing in HUVECs, indicating proangiogenic effects. In contrast, medium from M2 macrophages did not show similar activity. Additionally, S-CDC-treated M1 macrophage medium modulated the migratory and fibrotic behavior of PCFs. Transcriptomic analysis revealed a cytokine profile enriched in pro-reparative factors such as VEGFA, TGFB, and CCL2. These findings suggest that S-CDCs modulate macrophage polarization to promote tissue repair and angiogenesis while minimizing excessive inflammation. This highlights their potential as a therapeutic strategy to enhance cardiac regeneration following MI.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1601743"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1601743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inflammatory response plays a crucial role in tissue repair following myocardial infarction (MI), with macrophages being central regulators of inflammation and tissue remodeling. Macrophage polarization between pro-inflammatory M1 and anti inflammatory M2 phenotypes significantly influences inflammation and tissue repair. This study evaluates the effect of the secretome from porcine cardio sphere-derived cells (S-CDCs) on macrophage polarization and its downstream impact on endothelial cells (HUVECs) and cardiac fibroblasts (PCF). Macrophages were treated with the secretome from S-CDCs, and their polarization status was assessed. Conditioned media from treated macrophages were applied to HUVECs and PCFs to evaluate effects on migration, wound healing, and fibrotic activity. Additionally, transcriptomic profiling of S-CDCs was performed to identify relevant cytokines. S-CDCs induced a mixed M1/M2 phenotype in macrophages, attenuating M1-associated inflammation without fully promoting M2 characteristics. Conditioned medium from S-CDC-treated M1 macrophages enhanced migration and wound healing in HUVECs, indicating proangiogenic effects. In contrast, medium from M2 macrophages did not show similar activity. Additionally, S-CDC-treated M1 macrophage medium modulated the migratory and fibrotic behavior of PCFs. Transcriptomic analysis revealed a cytokine profile enriched in pro-reparative factors such as VEGFA, TGFB, and CCL2. These findings suggest that S-CDCs modulate macrophage polarization to promote tissue repair and angiogenesis while minimizing excessive inflammation. This highlights their potential as a therapeutic strategy to enhance cardiac regeneration following MI.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.