Molecular mechanisms underlying the effects of urea and the structural dynamics of bovine serum albumin.

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2025-07-01 DOI:10.1116/6.0004688
Yanis R Espinosa, C Manuel Carlevaro, C Gastón Ferrara
{"title":"Molecular mechanisms underlying the effects of urea and the structural dynamics of bovine serum albumin.","authors":"Yanis R Espinosa, C Manuel Carlevaro, C Gastón Ferrara","doi":"10.1116/6.0004688","DOIUrl":null,"url":null,"abstract":"<p><p>The disruption of protein structures by denaturants such as urea is well-documented, although the underlying molecular mechanisms are not yet fully understood. In this study, we employed molecular dynamics simulations to examine the effects of urea on the structural stability of bovine serum albumin (BSA) at concentrations ranging from 0 to 5M. Our results reveal that urea induces a dehydration-rehydration cycle by displacing and partially substituting water molecules in BSA's hydration shell. At lower concentrations, urea decreases protein-water hydrogen bonding while enhancing protein-urea interactions. At higher concentrations, urea tends to aggregate, which limits direct interactions with the protein, promotes rehydration, and leads to alterations in the tertiary structure, although the secondary structure remains largely preserved. These findings offer mechanistic insights into urea-induced protein denaturation and stability.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004688","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The disruption of protein structures by denaturants such as urea is well-documented, although the underlying molecular mechanisms are not yet fully understood. In this study, we employed molecular dynamics simulations to examine the effects of urea on the structural stability of bovine serum albumin (BSA) at concentrations ranging from 0 to 5M. Our results reveal that urea induces a dehydration-rehydration cycle by displacing and partially substituting water molecules in BSA's hydration shell. At lower concentrations, urea decreases protein-water hydrogen bonding while enhancing protein-urea interactions. At higher concentrations, urea tends to aggregate, which limits direct interactions with the protein, promotes rehydration, and leads to alterations in the tertiary structure, although the secondary structure remains largely preserved. These findings offer mechanistic insights into urea-induced protein denaturation and stability.

尿素作用的分子机制及牛血清白蛋白的结构动力学。
变性剂如尿素对蛋白质结构的破坏是有据可查的,尽管其潜在的分子机制尚未完全了解。在本研究中,我们采用分子动力学模拟研究了尿素在0 ~ 5M浓度范围内对牛血清白蛋白(BSA)结构稳定性的影响。我们的研究结果表明,尿素通过取代和部分取代牛血清白蛋白水合壳中的水分子来诱导脱水-再水合循环。在较低浓度下,尿素降低了蛋白质-水氢键,同时增强了蛋白质-尿素的相互作用。在较高浓度下,尿素倾向于聚集,这限制了与蛋白质的直接相互作用,促进了再水合作用,并导致三级结构的改变,尽管二级结构在很大程度上保留了下来。这些发现为尿素诱导的蛋白质变性和稳定性提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信