Bioprinting of human primary and iPSC-derived islets with retained and comparable functionality.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Miranda Poklar, Ravikumar K, Connor Wiegand, Ben Mizerak, Ruiqi Wang, Rodrigo M Florentino, Zhenghao Liu, Alejandro Soto-Gutierrez, Prashant N Kumta, Ipsita Banerjee
{"title":"Bioprinting of human primary and iPSC-derived islets with retained and comparable functionality.","authors":"Miranda Poklar, Ravikumar K, Connor Wiegand, Ben Mizerak, Ruiqi Wang, Rodrigo M Florentino, Zhenghao Liu, Alejandro Soto-Gutierrez, Prashant N Kumta, Ipsita Banerjee","doi":"10.1088/1758-5090/ade933","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, type 1 diabetes (T1D) can be treated through implantation of allogenic islets, which replenish the beta cell population, however this method requires an extensive post-implantation immunosuppressant regimen. Personalized cellular therapy can address this through implantation of an autologous cell population, induced pluripotent stem cells (iPSCs). Cellular therapy, however, requires an encapsulation device for implantation, and so to achieve this uniformly with cells in a clinical setting, bioprinting is a useful option. Bioprinting is dependent on having a bioink that is printable, retains structural fidelity after printing, and is supportive of cell type and function. While bioprinting of pancreatic islets has been demonstrated previously, success in maintaining islet function post-printing has been varied. The objective of this study is to investigate the feasibility of printing functional islets by determining the appropriate combination of bioink, printing parameters, and cell configuration. Here, we detail the successful bioprinting of both primary human islets and iPSC-derived islets embedded in an alginate/methylcellulose bioink, with functionality sustained within the construct for both cell lineages. Sc-RNAseq analysis also revealed that printing did not adversely affect the genetic expression and metabolic functionality of the iPSC-derived islets. Importantly, the iPSC-derived islets displayed comparable functionality to the primary islets, indicating the potential to act as a cell source alternative for T1D implantation.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"17 3","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ade933","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, type 1 diabetes (T1D) can be treated through implantation of allogenic islets, which replenish the beta cell population, however this method requires an extensive post-implantation immunosuppressant regimen. Personalized cellular therapy can address this through implantation of an autologous cell population, induced pluripotent stem cells (iPSCs). Cellular therapy, however, requires an encapsulation device for implantation, and so to achieve this uniformly with cells in a clinical setting, bioprinting is a useful option. Bioprinting is dependent on having a bioink that is printable, retains structural fidelity after printing, and is supportive of cell type and function. While bioprinting of pancreatic islets has been demonstrated previously, success in maintaining islet function post-printing has been varied. The objective of this study is to investigate the feasibility of printing functional islets by determining the appropriate combination of bioink, printing parameters, and cell configuration. Here, we detail the successful bioprinting of both primary human islets and iPSC-derived islets embedded in an alginate/methylcellulose bioink, with functionality sustained within the construct for both cell lineages. Sc-RNAseq analysis also revealed that printing did not adversely affect the genetic expression and metabolic functionality of the iPSC-derived islets. Importantly, the iPSC-derived islets displayed comparable functionality to the primary islets, indicating the potential to act as a cell source alternative for T1D implantation.

人类原代胰岛和ipsc衍生胰岛的生物打印,保留和类似的功能。
目前,1型糖尿病(T1D)可以通过异体胰岛移植治疗,补充β细胞群,但这种方法需要植入后广泛的免疫抑制方案。个性化细胞治疗可以通过植入自体细胞群,诱导多能干细胞(iPSCs)来解决这一问题。然而,细胞治疗需要一个植入的封装装置,因此为了在临床环境中实现细胞的均匀化,生物打印是一个有用的选择。生物打印依赖于具有可打印的生物墨水,在打印后保持结构保真度,并支持细胞类型和功能。虽然胰岛的生物打印以前已经证明,但在打印后维持胰岛功能的成功一直是不同的。本研究的目的是通过确定生物链接、打印参数和细胞结构的适当组合来研究打印功能胰岛的可行性。在这里,我们详细介绍了在海藻酸盐/甲基纤维素生物链接中成功打印初级人类胰岛和ipsc衍生的胰岛,并在两种细胞系的构建中保持功能。Sc-RNAseq分析还显示,打印不会对ipsc衍生的胰岛的遗传表达和代谢功能产生不利影响。重要的是,ipsc衍生的胰岛显示出与原代胰岛相当的功能,表明有可能作为T1D植入的细胞源替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信