{"title":"Quercetin-conjugated magnetic nanoparticles inhibit Staphylococcus aureus growth and biofilm formation via downregulation of Coa and Hla genes.","authors":"Alireza Habibi, Masoumeh Pakpour Roudsari, Seyyed Mahdi ZiaZiabari","doi":"10.1186/s13568-025-01915-4","DOIUrl":null,"url":null,"abstract":"<p><p>The research investigated the effects of that magnetic nanoparticles coated with the plant-based flavonoid quercetin have on the growth of Staphylococcus aureus. The synthesis of magnetic nanoparticles proceeded through co-precipitation and further involved quercetin coating using a dextran stabilizer. A combined product of these materials received the chemical name Fe<sub>3</sub>O<sub>4</sub>@Dex-QT. The study included multiple analytical tests such as FTIR (Fourier Transform Infrared Spectroscopy), FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-Dispersive X-Ray Spectroscopy) and XRD (X-ray diffraction) together with cellular and molecular assays. Biofilm detection experiments showed that 95% of studied microorganisms had moderate-to-strong biofilm formation abilities. The examined strains that formed biofilms exhibited complete biofilm inhibition at a minimum concentration of 512 μg/mL. Post-treatment with Fe<sub>3</sub>O<sub>4</sub>@Dex-QT nanoparticles, the Coa and Hla genes were expressed at 30 and 20% levels respectively, as determined through RT-PCR analysis. The research uncovered that Fe<sub>3</sub>O<sub>4</sub>@Dex-QT nanoparticles demonstrate successful antibacterial properties against S. aureus strains, making them viable for substituting conventional antibiotics.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"107"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01915-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The research investigated the effects of that magnetic nanoparticles coated with the plant-based flavonoid quercetin have on the growth of Staphylococcus aureus. The synthesis of magnetic nanoparticles proceeded through co-precipitation and further involved quercetin coating using a dextran stabilizer. A combined product of these materials received the chemical name Fe3O4@Dex-QT. The study included multiple analytical tests such as FTIR (Fourier Transform Infrared Spectroscopy), FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-Dispersive X-Ray Spectroscopy) and XRD (X-ray diffraction) together with cellular and molecular assays. Biofilm detection experiments showed that 95% of studied microorganisms had moderate-to-strong biofilm formation abilities. The examined strains that formed biofilms exhibited complete biofilm inhibition at a minimum concentration of 512 μg/mL. Post-treatment with Fe3O4@Dex-QT nanoparticles, the Coa and Hla genes were expressed at 30 and 20% levels respectively, as determined through RT-PCR analysis. The research uncovered that Fe3O4@Dex-QT nanoparticles demonstrate successful antibacterial properties against S. aureus strains, making them viable for substituting conventional antibiotics.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.