Marco Giulio Rozio, Davide Angelini, Simone Carrara
{"title":"Uncertainty factors and relative response factors: correcting detection and quantitation bias in extractables and leachables studies.","authors":"Marco Giulio Rozio, Davide Angelini, Simone Carrara","doi":"10.1007/s00216-025-05946-5","DOIUrl":null,"url":null,"abstract":"<p><p>The transfer of chemicals from packaging or medical devices to drug formulations, known as extractables and leachables (E&L) release, can affect drug strength and safety. These released substances must be monitored and assessed through toxicological evaluation. Identifying and quantifying analytes above a specific analytical evaluation threshold (AET) is crucial, but variability in response factors (RFs) complicates accurate detection, leading to potential errors in quantitation. An uncertainty factor (UF) can partially correct this, though it is limited by RF variability, and a multidetector approach improves characterization but does not fully resolve quantitation bias. The RRFlow model proposed in this study offers a solution by determining E&L concentrations without real-time reference standards analysis. It involves identity confirmation, RRF validation, and applies an average corrective factor (RRFi). A numerical simulation benchmark (NSB) is used to compare different scenarios, such as varying UF values, RRFlow application, and fixed rescaling factors. The benchmark assigns concentration values to model compounds with different response factors, iterating the process to evaluate the number of false positive and negative errors. The numerical simulations show that RRFlow reduces detection bias and outperforms UF-based methods, mitigating false positives and negatives.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"4331-4349"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12283826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05946-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The transfer of chemicals from packaging or medical devices to drug formulations, known as extractables and leachables (E&L) release, can affect drug strength and safety. These released substances must be monitored and assessed through toxicological evaluation. Identifying and quantifying analytes above a specific analytical evaluation threshold (AET) is crucial, but variability in response factors (RFs) complicates accurate detection, leading to potential errors in quantitation. An uncertainty factor (UF) can partially correct this, though it is limited by RF variability, and a multidetector approach improves characterization but does not fully resolve quantitation bias. The RRFlow model proposed in this study offers a solution by determining E&L concentrations without real-time reference standards analysis. It involves identity confirmation, RRF validation, and applies an average corrective factor (RRFi). A numerical simulation benchmark (NSB) is used to compare different scenarios, such as varying UF values, RRFlow application, and fixed rescaling factors. The benchmark assigns concentration values to model compounds with different response factors, iterating the process to evaluate the number of false positive and negative errors. The numerical simulations show that RRFlow reduces detection bias and outperforms UF-based methods, mitigating false positives and negatives.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.