Daniel D Scott, Francesco Bettariga, Marco Ventin, Chris Bishop, Britta Stordal
{"title":"Nuclear destabilisation - a possible genesis of cancer?","authors":"Daniel D Scott, Francesco Bettariga, Marco Ventin, Chris Bishop, Britta Stordal","doi":"10.1111/brv.70052","DOIUrl":null,"url":null,"abstract":"<p><p>This review examines the increasingly prominent role of mechanics within cancer formation and progression. The extremely varied and contradictory genetic landscape of cancer is in stark contrast to the seemingly universal mechanical characteristics of cancer cells and their tumour microenvironment, and mechanics may be a principal unifying trait of this disease. The tight regulation of innate cell mechanical properties raises the possibility that destabilisation of the cell drives tumour formation in an attempt to restore cell mechanical homeostasis. With losses in cell stiffness more pronounced at the cell nucleus, we hypothesise that destabilisation occurs within the nucleus, likely within the nucleosome. Beyond the mechanical properties of the cell, this compromise to the chromatin structure holds significant repercussions for both genetic and epigenetic regulation, providing scope for significant genetic dysregulation and mutation. However, the nature of such genetic events will be dependent upon the region of mechanical destabilisation; thus, introducing greater variability and heterogeneity to genetic changes. We conclude with the hypothesis that cancer has a mechanical genesis, in which cell nuclear destabilisation functions as the enabling hallmark of cancer. It is theorised that both genetic and structural dysfunction stem from this nuclear destabilisation, driving disease pathology and progression.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.70052","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review examines the increasingly prominent role of mechanics within cancer formation and progression. The extremely varied and contradictory genetic landscape of cancer is in stark contrast to the seemingly universal mechanical characteristics of cancer cells and their tumour microenvironment, and mechanics may be a principal unifying trait of this disease. The tight regulation of innate cell mechanical properties raises the possibility that destabilisation of the cell drives tumour formation in an attempt to restore cell mechanical homeostasis. With losses in cell stiffness more pronounced at the cell nucleus, we hypothesise that destabilisation occurs within the nucleus, likely within the nucleosome. Beyond the mechanical properties of the cell, this compromise to the chromatin structure holds significant repercussions for both genetic and epigenetic regulation, providing scope for significant genetic dysregulation and mutation. However, the nature of such genetic events will be dependent upon the region of mechanical destabilisation; thus, introducing greater variability and heterogeneity to genetic changes. We conclude with the hypothesis that cancer has a mechanical genesis, in which cell nuclear destabilisation functions as the enabling hallmark of cancer. It is theorised that both genetic and structural dysfunction stem from this nuclear destabilisation, driving disease pathology and progression.
期刊介绍:
Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly.
The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions.
The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field.
Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.