Cole Emanuelson, Anirban Bardhan, Nicholas Ankenbruck, Jessica Boette, Alexander Deiters
{"title":"Inverted Molecular Beacons as Reaction-Based Hybridization Probes for Small-Molecule Activation by Nucleic Acid Inputs.","authors":"Cole Emanuelson, Anirban Bardhan, Nicholas Ankenbruck, Jessica Boette, Alexander Deiters","doi":"10.1021/acschembio.5c00333","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleic acid-based hybridization probes that produce a fluorescent signal in the presence of DNA or RNA target molecules are essential components of nucleic acid computation and detection strategies. Commonly, the fluorescence activation of reporter gates is triggered by separation of a fluorophore-quencher pair upon target hybridization or strand displacement. In order to expand the utility of DNA computing by providing a chemical reaction as the ultimate output, reporter systems have been designed that carry reactive groups, which undergo a proximity-induced reaction upon oligonucleotide hybridization. The downside of published reporter gate designs is that they are composed of two separate, chemically modified oligonucleotides, which need to be taken into consideration when designing upstream circuits. Here, we report a novel hairpin-forming nucleic acid reporter probe that utilizes template-induced proximal reactivity to activate a small molecule in the presence of an unmodified nucleic acid input molecule. This DNA hairpin reporter gate consists of a duplex between a blocking strand and a hairpin-forming reporter strand. In the presence of input, the blocking strand is displaced, triggering hairpin formation allowing the proximity-driven templated activation of a vinyl ether-caged fluorophore by a tetrazine via an inverse electron demand Diels-Alder reaction. This new approach demonstrates robust small-molecule activation <i>in vitro</i> and in cells through logic operations in the presence of input DNA molecules.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00333","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleic acid-based hybridization probes that produce a fluorescent signal in the presence of DNA or RNA target molecules are essential components of nucleic acid computation and detection strategies. Commonly, the fluorescence activation of reporter gates is triggered by separation of a fluorophore-quencher pair upon target hybridization or strand displacement. In order to expand the utility of DNA computing by providing a chemical reaction as the ultimate output, reporter systems have been designed that carry reactive groups, which undergo a proximity-induced reaction upon oligonucleotide hybridization. The downside of published reporter gate designs is that they are composed of two separate, chemically modified oligonucleotides, which need to be taken into consideration when designing upstream circuits. Here, we report a novel hairpin-forming nucleic acid reporter probe that utilizes template-induced proximal reactivity to activate a small molecule in the presence of an unmodified nucleic acid input molecule. This DNA hairpin reporter gate consists of a duplex between a blocking strand and a hairpin-forming reporter strand. In the presence of input, the blocking strand is displaced, triggering hairpin formation allowing the proximity-driven templated activation of a vinyl ether-caged fluorophore by a tetrazine via an inverse electron demand Diels-Alder reaction. This new approach demonstrates robust small-molecule activation in vitro and in cells through logic operations in the presence of input DNA molecules.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.