{"title":"Effects of Fluorinated Additives in Molten Salt Electrolytes for Calcium Batteries","authors":"Carolina Cruz, Patrik Johansson","doi":"10.1002/batt.202500239","DOIUrl":null,"url":null,"abstract":"<p>Fluorinated additives offer a promising route to tailor the structure and transport properties of electrolytes in general, yet their role in molten salt electrolytes (MSEs) remains poorly understood. Here, the influence of three fluorinated additives, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), 1,2- bis(2,2,2-trifluoroethoxy) ethane (BTFE), and PhF, on the structure and dynamics of an MSE composed of [Li, Na, K, Ca]FSI, is investigated using molecular dynamics simulations—with the end-goal of improved calcium battery (CaB) electrolytes. The differences in additive chemical structure affect cation coordination, ionic cage persistence, and ligand exchange kinetics; while TTE and BTFE directly participate in cation coordination, PhF acts as a non-coordinating diluent, weakening the ionic network through spatial disruption. These additive-specific effects result in cation-dependent trends in coordination and mobility. Overall, the findings provide a proof-of-concept for rational additive selection in MSEs, shifting the design paradigm from optimizing bulk conductivity toward engineering coordination and interfacial behavior for CaB electrolytes.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 7","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202500239","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202500239","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorinated additives offer a promising route to tailor the structure and transport properties of electrolytes in general, yet their role in molten salt electrolytes (MSEs) remains poorly understood. Here, the influence of three fluorinated additives, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), 1,2- bis(2,2,2-trifluoroethoxy) ethane (BTFE), and PhF, on the structure and dynamics of an MSE composed of [Li, Na, K, Ca]FSI, is investigated using molecular dynamics simulations—with the end-goal of improved calcium battery (CaB) electrolytes. The differences in additive chemical structure affect cation coordination, ionic cage persistence, and ligand exchange kinetics; while TTE and BTFE directly participate in cation coordination, PhF acts as a non-coordinating diluent, weakening the ionic network through spatial disruption. These additive-specific effects result in cation-dependent trends in coordination and mobility. Overall, the findings provide a proof-of-concept for rational additive selection in MSEs, shifting the design paradigm from optimizing bulk conductivity toward engineering coordination and interfacial behavior for CaB electrolytes.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.