Christian Bohr. Discoverer of Homotropic and Heterotopic Allostery

IF 5.6 2区 医学 Q1 PHYSIOLOGY
Niels Bindslev
{"title":"Christian Bohr. Discoverer of Homotropic and Heterotopic Allostery","authors":"Niels Bindslev","doi":"10.1111/apha.70016","DOIUrl":null,"url":null,"abstract":"<p>This essay recounts and revisits the scientific contributions of Christian Bohr, highlighting his pivotal role in discovering allostery about 120 years ago. Bohr's meticulous experimentation led to identifying two distinct forms of allostery: homotropic (single-ligand) and heterotropic (multi-ligand), the latter widely recognized as the Bohr Effect. His insights into oxygen binding to hemoglobin, as also modulated by carbon dioxide presence, laid the foundation for part of modern pharmacological advancements. Today, allosteric principles drive drug development, improving specificity and potentially minimizing adverse effects, with numerous allosteric modulators emerging in pharmaceutical pipelines. The treatise spans 13 chapters and an appendix with definitions on allosteric terms. It begins with Bohr's background, laboratory environment, and pivotal experiments in 1903 that demonstrated allosteric mechanisms. It traces Bohr's scientific journey—from medical training to his professorship in Copenhagen—and his collaborative research with Karl Hasselbalch and August Krogh. The work situates Bohr within the broader historical context, examining influence of earlier, 19th-century, and later physicochemical and physiological thoughts on his discoveries. Further chapters discuss dose-response relationships, including Hüfner's hyperbolic equation and Henri's enzyme kinetics, parallel to Bohr's findings. Bohr's S-shaped oxygen-hemoglobin binding curve, analyzed in 1904, marked a critical advancement in understanding homotropic allostery. Subsequent developments, such as Hill's equation and the Monod-Wyman-Changeux model, settled both types of allostery description. My study concludes with Bohr's abandonment in 1910 of his secretion theory and his legacy. Despite his early death in 1911, Bohr's contributions remain fundamental, warranting revitalized recognition for his discovery of allostery.</p>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 S734","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.70016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This essay recounts and revisits the scientific contributions of Christian Bohr, highlighting his pivotal role in discovering allostery about 120 years ago. Bohr's meticulous experimentation led to identifying two distinct forms of allostery: homotropic (single-ligand) and heterotropic (multi-ligand), the latter widely recognized as the Bohr Effect. His insights into oxygen binding to hemoglobin, as also modulated by carbon dioxide presence, laid the foundation for part of modern pharmacological advancements. Today, allosteric principles drive drug development, improving specificity and potentially minimizing adverse effects, with numerous allosteric modulators emerging in pharmaceutical pipelines. The treatise spans 13 chapters and an appendix with definitions on allosteric terms. It begins with Bohr's background, laboratory environment, and pivotal experiments in 1903 that demonstrated allosteric mechanisms. It traces Bohr's scientific journey—from medical training to his professorship in Copenhagen—and his collaborative research with Karl Hasselbalch and August Krogh. The work situates Bohr within the broader historical context, examining influence of earlier, 19th-century, and later physicochemical and physiological thoughts on his discoveries. Further chapters discuss dose-response relationships, including Hüfner's hyperbolic equation and Henri's enzyme kinetics, parallel to Bohr's findings. Bohr's S-shaped oxygen-hemoglobin binding curve, analyzed in 1904, marked a critical advancement in understanding homotropic allostery. Subsequent developments, such as Hill's equation and the Monod-Wyman-Changeux model, settled both types of allostery description. My study concludes with Bohr's abandonment in 1910 of his secretion theory and his legacy. Despite his early death in 1911, Bohr's contributions remain fundamental, warranting revitalized recognition for his discovery of allostery.

Abstract Image

基督教波尔。同向异位变构的发现者
这篇文章叙述并回顾了克里斯蒂安·玻尔的科学贡献,强调了他在大约120年前发现变构术中的关键作用。玻尔细致的实验导致确定了两种不同形式的变构:同向性(单配体)和异向性(多配体),后者被广泛认为是玻尔效应。他对氧气与血红蛋白结合的见解,也被二氧化碳的存在所调节,为现代药理学的部分进步奠定了基础。今天,变构原理推动了药物开发,提高了特异性,并潜在地减少了不良反应,许多变构调节剂出现在制药管道中。论文横跨13章和一个附录与定义的变构术语。它从玻尔的背景、实验室环境和1903年证明变构机制的关键实验开始。它追溯了玻尔的科学之旅——从接受医学培训到在哥本哈根担任教授,以及他与卡尔·哈塞尔巴尔奇和奥古斯特·克拉夫的合作研究。这项工作将玻尔置于更广阔的历史背景中,考察了早期、19世纪和后来的物理化学和生理思想对他的发现的影响。进一步的章节讨论剂量-反应关系,包括h夫纳的双曲方程和亨利的酶动力学,平行于玻尔的发现。玻尔的s形氧-血红蛋白结合曲线于1904年被分析,标志着对同向变构的理解取得了重大进展。随后的发展,如希尔方程和Monod-Wyman-Changeux模型,解决了这两种类型的变构描述。我的研究以玻尔在1910年放弃他的分泌物理论和他的遗产而告终。尽管玻尔早在1911年就去世了,但他的贡献仍然是根本性的,他的变构术的发现使人们重新认识他。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Physiologica
Acta Physiologica 医学-生理学
CiteScore
11.80
自引率
15.90%
发文量
182
审稿时长
4-8 weeks
期刊介绍: Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信