Yue Li, Peipei Ding, Li Cai, Lin Shi, Yang Zhao, Hong Liu, Haocheng Yuan, Dengfeng Yu, Chuangjie Guo, Qiang Gao, Liangliang Li, Yaoyu Ren, Cewen Nan, Yang Shen
{"title":"Eco-Friendly Soy Protein-Based Solid-State Electrolyte Exhibiting Stable High-Rate Cyclic Performances by Molecular Regulation Design (Adv. Energy Mater. 27/2025)","authors":"Yue Li, Peipei Ding, Li Cai, Lin Shi, Yang Zhao, Hong Liu, Haocheng Yuan, Dengfeng Yu, Chuangjie Guo, Qiang Gao, Liangliang Li, Yaoyu Ren, Cewen Nan, Yang Shen","doi":"10.1002/aenm.202570118","DOIUrl":null,"url":null,"abstract":"<p><b>Solid-State Electrolyte</b></p><p>In article number 2501056, Yaoyu Ren, Yang Shen, and co-workers illustrate the preparation of eco-friendly high-performance soy protein-based solid electrolyte through molecular regulation strategies, highlighting its significant potential for application in the future renewable energy sector.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 27","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202570118","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202570118","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-State Electrolyte
In article number 2501056, Yaoyu Ren, Yang Shen, and co-workers illustrate the preparation of eco-friendly high-performance soy protein-based solid electrolyte through molecular regulation strategies, highlighting its significant potential for application in the future renewable energy sector.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.