Jonathan W. Lopez, Matthew B. Lodato, Taylor C. Michael, Lauren M. Morris, Carla L. Atkinson
{"title":"A novel, self-contained benthic chamber design for conducting freshwater ecosystem experiments","authors":"Jonathan W. Lopez, Matthew B. Lodato, Taylor C. Michael, Lauren M. Morris, Carla L. Atkinson","doi":"10.1002/lom3.10692","DOIUrl":null,"url":null,"abstract":"<p>We present a newly developed design for a self-contained benthic chamber for conducting in situ ecosystem experiments in streams, with a focus on biogeochemical processes such as ecosystem metabolism and nutrient cycling. Our design expands upon smaller, portable chamber designs and is meant to answer questions at larger scales. These new chambers allow for a high level of experimental control in the field and can be used to generate spatially explicit data regarding ecosystem processes and to test mechanistic hypotheses. They are built to be deployed within the stream over periods of weeks to months and to withstand natural hydraulic forces of the benthic zone. First, we describe the materials and steps that are needed to construct these chambers in detail. Then, we report the methods and results of a multi-part, diagnostic field study meant to demonstrate the performance and utility of the design. We quantified solute dynamics using a conservative tracer injection, then we estimated ecosystem metabolism across the study site and performed nutrient additions. We detected asymptotic declines in tracer concentrations, calculated nutrient removal rates, and mapped hotspots of ecosystem metabolism. Flow velocity and water depth imposed limitations, but with appropriate methodological forethought these limitations can be minimized. The capacity of our design to accommodate complex, three-dimensional habitats and macrofauna, along with the capability to generate spatially explicit data, are the main advances we present. These advances provide a novel method whereby motivated users can connect mechanistic hypothesis testing with natural ecological processes through ecosystem-level field experiments.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"23 7","pages":"451-466"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10692","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a newly developed design for a self-contained benthic chamber for conducting in situ ecosystem experiments in streams, with a focus on biogeochemical processes such as ecosystem metabolism and nutrient cycling. Our design expands upon smaller, portable chamber designs and is meant to answer questions at larger scales. These new chambers allow for a high level of experimental control in the field and can be used to generate spatially explicit data regarding ecosystem processes and to test mechanistic hypotheses. They are built to be deployed within the stream over periods of weeks to months and to withstand natural hydraulic forces of the benthic zone. First, we describe the materials and steps that are needed to construct these chambers in detail. Then, we report the methods and results of a multi-part, diagnostic field study meant to demonstrate the performance and utility of the design. We quantified solute dynamics using a conservative tracer injection, then we estimated ecosystem metabolism across the study site and performed nutrient additions. We detected asymptotic declines in tracer concentrations, calculated nutrient removal rates, and mapped hotspots of ecosystem metabolism. Flow velocity and water depth imposed limitations, but with appropriate methodological forethought these limitations can be minimized. The capacity of our design to accommodate complex, three-dimensional habitats and macrofauna, along with the capability to generate spatially explicit data, are the main advances we present. These advances provide a novel method whereby motivated users can connect mechanistic hypothesis testing with natural ecological processes through ecosystem-level field experiments.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.