{"title":"Front Cover: pH-Controlled Gliding Motions in Pillar[5]arene-Containing Molecular Shuttles (ChemistryEurope 4/2025)","authors":"Nihed Becharguia, Iwona Nierengarten, Alix Sournia-Saquet, Emeric Wasielewski, Rym Abidi, Béatrice Delavaux-Nicot, Jean-François Nierengarten","doi":"10.1002/ceur.70005","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover</b> shows a space shuttle passing through a pillar[5]arene to illustrate a molecular shuttle combining this macrocyclic component with an axle moiety incorporating a decyl chain station and a protonable triazole subunit. In their research article (DOI: 10.1002/ceur.202400115), I. Nierengarten, B. Delavaux-Nicot, J.-F. Nierengarten and co-workers show that the amplitude of the gliding motions of the macrocyclic component along the axle moiety of the molecular shuttle can be controlled by an acid–base or an electrochemical stimulus.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryEurope","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceur.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Front Cover shows a space shuttle passing through a pillar[5]arene to illustrate a molecular shuttle combining this macrocyclic component with an axle moiety incorporating a decyl chain station and a protonable triazole subunit. In their research article (DOI: 10.1002/ceur.202400115), I. Nierengarten, B. Delavaux-Nicot, J.-F. Nierengarten and co-workers show that the amplitude of the gliding motions of the macrocyclic component along the axle moiety of the molecular shuttle can be controlled by an acid–base or an electrochemical stimulus.