Juan Pablo Arango;Lucien Etienne;Eric Duviella;Kokou Langueh;Pablo Segovia;Vicenç Puig
{"title":"A Novel Unknown Input Observer Design for Nonlinear LPV Systems","authors":"Juan Pablo Arango;Lucien Etienne;Eric Duviella;Kokou Langueh;Pablo Segovia;Vicenç Puig","doi":"10.1109/LCSYS.2025.3580325","DOIUrl":null,"url":null,"abstract":"This letter presents the design of an unknown input observer (UIO) for linear parameter-varying (LPV) systems, including nonlinearities that are assumed to fulfill one-sided Lipschitz quadratically inner-bounded (OSL-QIB) conditions. The proposed approach introduces a novel extension of conventional LPV frameworks by directly incorporating nonlinear terms, aiming to improve observer performance and reduce the modeling errors typically introduced during the transformation of a nonlinear system into its LPV counterpart. A key contribution of this letter is the development of a UIO design that avoids the state transformation step, which is often highly complex and only valid under restrictive assumptions such as a constant unknown input matrix D. By eliminating this constraint, the proposed observer design significantly enhances scalability and applicability to a broader class of systems. The performance and effectiveness of the approach are demonstrated through both a numerical example and a well-established open-channel flow benchmark: the Corning channel in California, USA.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1658-1663"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11037488/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents the design of an unknown input observer (UIO) for linear parameter-varying (LPV) systems, including nonlinearities that are assumed to fulfill one-sided Lipschitz quadratically inner-bounded (OSL-QIB) conditions. The proposed approach introduces a novel extension of conventional LPV frameworks by directly incorporating nonlinear terms, aiming to improve observer performance and reduce the modeling errors typically introduced during the transformation of a nonlinear system into its LPV counterpart. A key contribution of this letter is the development of a UIO design that avoids the state transformation step, which is often highly complex and only valid under restrictive assumptions such as a constant unknown input matrix D. By eliminating this constraint, the proposed observer design significantly enhances scalability and applicability to a broader class of systems. The performance and effectiveness of the approach are demonstrated through both a numerical example and a well-established open-channel flow benchmark: the Corning channel in California, USA.