Michelle Delcourt , Catherine Greenhill , Mikhail Isaev , Bernard Lidický , Luke Postle
{"title":"Decomposing random regular graphs into stars","authors":"Michelle Delcourt , Catherine Greenhill , Mikhail Isaev , Bernard Lidický , Luke Postle","doi":"10.1016/j.ejc.2025.104216","DOIUrl":null,"url":null,"abstract":"<div><div>We study <span><math><mi>k</mi></math></span>-star decompositions, that is, partitions of the edge set into disjoint stars with <span><math><mi>k</mi></math></span> edges, in the uniformly random <span><math><mi>d</mi></math></span>-regular graph model <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span>. Using the small subgraph conditioning method, we prove an existence result for such decompositions for all <span><math><mrow><mi>d</mi><mo>,</mo><mi>k</mi></mrow></math></span> such that <span><math><mrow><mi>d</mi><mo>/</mo><mn>2</mn><mo><</mo><mi>k</mi><mo>≤</mo><mi>d</mi><mo>/</mo><mn>2</mn><mo>+</mo><mo>max</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>log</mo><mi>d</mi><mo>}</mo></mrow></mrow></math></span>. More generally, we give a sufficient existence condition that can be checked numerically for any given values of <span><math><mi>d</mi></math></span> and <span><math><mi>k</mi></math></span>. Complementary negative results are obtained using the independence ratio of random regular graphs. Our results establish an existence threshold for <span><math><mi>k</mi></math></span>-star decompositions in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span> for all <span><math><mrow><mi>d</mi><mo>≤</mo><mn>100</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>></mo><mi>d</mi><mo>/</mo><mn>2</mn></mrow></math></span>.</div><div>For smaller values of <span><math><mi>k</mi></math></span>, the connection between <span><math><mi>k</mi></math></span>-star decompositions and <span><math><mi>β</mi></math></span>-orientations allows us to apply results of Thomassen (2012) and Lovász et al. (2013). We prove that random <span><math><mi>d</mi></math></span>-regular graphs satisfy their assumptions with high probability, thus establishing a.a.s. existence of <span><math><mi>k</mi></math></span>-star decompositions (i) when <span><math><mrow><mn>2</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>k</mi><mo>≤</mo><mi>d</mi></mrow></math></span>, and (ii) when <span><math><mi>k</mi></math></span> is odd and <span><math><mrow><mi>k</mi><mo><</mo><mi>d</mi><mo>/</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104216"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001052","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study -star decompositions, that is, partitions of the edge set into disjoint stars with edges, in the uniformly random -regular graph model . Using the small subgraph conditioning method, we prove an existence result for such decompositions for all such that . More generally, we give a sufficient existence condition that can be checked numerically for any given values of and . Complementary negative results are obtained using the independence ratio of random regular graphs. Our results establish an existence threshold for -star decompositions in for all and .
For smaller values of , the connection between -star decompositions and -orientations allows us to apply results of Thomassen (2012) and Lovász et al. (2013). We prove that random -regular graphs satisfy their assumptions with high probability, thus establishing a.a.s. existence of -star decompositions (i) when , and (ii) when is odd and .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.