Decomposing random regular graphs into stars

IF 0.9 3区 数学 Q1 MATHEMATICS
Michelle Delcourt , Catherine Greenhill , Mikhail Isaev , Bernard Lidický , Luke Postle
{"title":"Decomposing random regular graphs into stars","authors":"Michelle Delcourt ,&nbsp;Catherine Greenhill ,&nbsp;Mikhail Isaev ,&nbsp;Bernard Lidický ,&nbsp;Luke Postle","doi":"10.1016/j.ejc.2025.104216","DOIUrl":null,"url":null,"abstract":"<div><div>We study <span><math><mi>k</mi></math></span>-star decompositions, that is, partitions of the edge set into disjoint stars with <span><math><mi>k</mi></math></span> edges, in the uniformly random <span><math><mi>d</mi></math></span>-regular graph model <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span>. Using the small subgraph conditioning method, we prove an existence result for such decompositions for all <span><math><mrow><mi>d</mi><mo>,</mo><mi>k</mi></mrow></math></span> such that <span><math><mrow><mi>d</mi><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>k</mi><mo>≤</mo><mi>d</mi><mo>/</mo><mn>2</mn><mo>+</mo><mo>max</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>log</mo><mi>d</mi><mo>}</mo></mrow></mrow></math></span>. More generally, we give a sufficient existence condition that can be checked numerically for any given values of <span><math><mi>d</mi></math></span> and <span><math><mi>k</mi></math></span>. Complementary negative results are obtained using the independence ratio of random regular graphs. Our results establish an existence threshold for <span><math><mi>k</mi></math></span>-star decompositions in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span> for all <span><math><mrow><mi>d</mi><mo>≤</mo><mn>100</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>&gt;</mo><mi>d</mi><mo>/</mo><mn>2</mn></mrow></math></span>.</div><div>For smaller values of <span><math><mi>k</mi></math></span>, the connection between <span><math><mi>k</mi></math></span>-star decompositions and <span><math><mi>β</mi></math></span>-orientations allows us to apply results of Thomassen (2012) and Lovász et al. (2013). We prove that random <span><math><mi>d</mi></math></span>-regular graphs satisfy their assumptions with high probability, thus establishing a.a.s. existence of <span><math><mi>k</mi></math></span>-star decompositions (i) when <span><math><mrow><mn>2</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>k</mi><mo>≤</mo><mi>d</mi></mrow></math></span>, and (ii) when <span><math><mi>k</mi></math></span> is odd and <span><math><mrow><mi>k</mi><mo>&lt;</mo><mi>d</mi><mo>/</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104216"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001052","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study k-star decompositions, that is, partitions of the edge set into disjoint stars with k edges, in the uniformly random d-regular graph model Gn,d. Using the small subgraph conditioning method, we prove an existence result for such decompositions for all d,k such that d/2<kd/2+max{1,16logd}. More generally, we give a sufficient existence condition that can be checked numerically for any given values of d and k. Complementary negative results are obtained using the independence ratio of random regular graphs. Our results establish an existence threshold for k-star decompositions in Gn,d for all d100 and k>d/2.
For smaller values of k, the connection between k-star decompositions and β-orientations allows us to apply results of Thomassen (2012) and Lovász et al. (2013). We prove that random d-regular graphs satisfy their assumptions with high probability, thus establishing a.a.s. existence of k-star decompositions (i) when 2k2+kd, and (ii) when k is odd and k<d/2.
将随机规则图分解成星形
我们研究了均匀随机d规则图模型Gn,d中的k星分解,即将边集划分为具有k条边的不相交星。利用小子图条件法,证明了d,k的所有分解的存在性,使得d/2<;k≤d/2+max{1,16logd}。更一般地,我们给出了对于任意给定的d和k值都可以用数值检验的充分存在性条件。利用随机正则图的独立比得到了互补的负结果。我们的结果为Gn、d中所有d≤100和k>;d/2的k星分解建立了存在阈值。对于较小的k值,k星分解与β取向之间的联系使我们能够应用Thomassen(2012)和Lovász等人(2013)的结果。我们证明了随机d正则图高概率地满足它们的假设,从而建立了k-星分解(i)当2k2+k≤d,以及(ii)当k为奇数且k<;d/2时的a.a.s.存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信