An integrated machine learning and fractional calculus approach to predicting diabetes risk in women

David Amilo , Khadijeh Sadri , Evren Hincal , Muhammad Farman , Kottakkaran Sooppy Nisar , Mohamed Hafez
{"title":"An integrated machine learning and fractional calculus approach to predicting diabetes risk in women","authors":"David Amilo ,&nbsp;Khadijeh Sadri ,&nbsp;Evren Hincal ,&nbsp;Muhammad Farman ,&nbsp;Kottakkaran Sooppy Nisar ,&nbsp;Mohamed Hafez","doi":"10.1016/j.health.2025.100402","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel dual approach for diabetes risk prediction in women, combining machine learning classification with fractional-order physiological modeling. We employ seven machine learning algorithms: Decision Tree, Logistic Regression, Support Vector Machine (SVM), Random Forest, Bagged Trees, Naive Bayes, and XGBoost, to identify key risk factors, with XGBoost demonstrating higher performance. Glucose levels, BMI, blood pressure, and Diabetes Pedigree Function emerged as the most significant predictors across all models. Complementing these data-driven insights, we develop a Caputo fractional-order model that captures the temporal dynamics of glucose-insulin regulation, BMI, and blood pressure. Through fixed-point theorem analysis, we prove the existence and uniqueness of solutions, while numerical implementations using Lagrange polynomial interpolation reveal how varying fractional orders affect metabolic response patterns. This mathematical framework provides unique insights into the progression of diabetes, particularly through its ability to model memory effects and long-term physiological changes. The practical implementation of our research features an intuitive graphical user interface (GUI) that integrates both approaches, enabling real-time risk assessment with dynamic feedback. Our analysis of the Pima Indians dataset confirms important physiological relationships, including age-pregnancy and BMI-skin thickness correlations. This dual-method framework offers clinicians a comprehensive tool for diabetes management, combining the immediate predictive power of machine learning with the longitudinal perspective of fractional-order modeling. The machine learning component provides accurate short-term risk stratification, while the fractional-order model enhances understanding of long-term disease progression. Together, they enable more personalized and proactive care strategies, advancing both the theory and practice of diabetes risk assessment.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"8 ","pages":"Article 100402"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel dual approach for diabetes risk prediction in women, combining machine learning classification with fractional-order physiological modeling. We employ seven machine learning algorithms: Decision Tree, Logistic Regression, Support Vector Machine (SVM), Random Forest, Bagged Trees, Naive Bayes, and XGBoost, to identify key risk factors, with XGBoost demonstrating higher performance. Glucose levels, BMI, blood pressure, and Diabetes Pedigree Function emerged as the most significant predictors across all models. Complementing these data-driven insights, we develop a Caputo fractional-order model that captures the temporal dynamics of glucose-insulin regulation, BMI, and blood pressure. Through fixed-point theorem analysis, we prove the existence and uniqueness of solutions, while numerical implementations using Lagrange polynomial interpolation reveal how varying fractional orders affect metabolic response patterns. This mathematical framework provides unique insights into the progression of diabetes, particularly through its ability to model memory effects and long-term physiological changes. The practical implementation of our research features an intuitive graphical user interface (GUI) that integrates both approaches, enabling real-time risk assessment with dynamic feedback. Our analysis of the Pima Indians dataset confirms important physiological relationships, including age-pregnancy and BMI-skin thickness correlations. This dual-method framework offers clinicians a comprehensive tool for diabetes management, combining the immediate predictive power of machine learning with the longitudinal perspective of fractional-order modeling. The machine learning component provides accurate short-term risk stratification, while the fractional-order model enhances understanding of long-term disease progression. Together, they enable more personalized and proactive care strategies, advancing both the theory and practice of diabetes risk assessment.
综合机器学习和分数微积分方法预测女性糖尿病风险
本研究提出了一种新的双重方法来预测女性糖尿病风险,将机器学习分类与分数阶生理建模相结合。我们采用了七种机器学习算法:决策树、逻辑回归、支持向量机(SVM)、随机森林、袋装树、朴素贝叶斯和XGBoost来识别关键风险因素,其中XGBoost表现出更高的性能。在所有模型中,血糖水平、BMI、血压和糖尿病谱系函数是最重要的预测因子。为了补充这些数据驱动的见解,我们开发了一个Caputo分数阶模型,该模型捕获了葡萄糖-胰岛素调节、BMI和血压的时间动态。通过不动点定理分析,我们证明了解的存在唯一性,而使用拉格朗日多项式插值的数值实现揭示了不同分数阶对代谢响应模式的影响。这一数学框架为糖尿病的发展提供了独特的见解,特别是通过其模拟记忆效应和长期生理变化的能力。我们的研究的实际实施特点是一个直观的图形用户界面(GUI),集成了这两种方法,实现了实时风险评估和动态反馈。我们对皮马印第安人数据集的分析证实了重要的生理关系,包括年龄-怀孕和bmi -皮肤厚度的相关性。这种双方法框架结合了机器学习的即时预测能力和分数阶模型的纵向视角,为临床医生提供了糖尿病管理的综合工具。机器学习组件提供了准确的短期风险分层,而分数阶模型增强了对长期疾病进展的理解。总之,它们能够实现更加个性化和主动的护理策略,促进糖尿病风险评估的理论和实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信