Shuaiwen Hu , Shaogeng Wang , Xiaomao Yang , Ping Li , Zhiguo Li , Bin Luo , Yujie Liang , Xiaohua Pan
{"title":"Exosomes promise better bone regeneration","authors":"Shuaiwen Hu , Shaogeng Wang , Xiaomao Yang , Ping Li , Zhiguo Li , Bin Luo , Yujie Liang , Xiaohua Pan","doi":"10.1016/j.reth.2025.06.020","DOIUrl":null,"url":null,"abstract":"<div><div>Fractures primarily result from high-energy trauma, leading to structural discontinuity of bone tissue. Contemporary therapeutic approaches continue to face persistent challenges including nonunion, infection, and inflammatory complications that pose significant clinical management difficulties. Emerging evidence demonstrates that extracellular vesicles (EVs), particularly exosomes, serve as critical mediators in diverse pathophysiological processes. Accumulating studies reveal that exosomal cargos enhance osteogenesis and angiogenesis through dynamic regulation of cellular components and molecular networks within the bone remodeling microenvironment, thereby potentiating fracture healing cascades. This comprehensive review systematically examines the mechanistic contributions of exosomes in coordinating osteoblastic differentiation, osteoclastic activity modulation, and neovascularization processes. In addition, we describe the role of exosomes from different cellular sources (e.g., mesenchymal stem cells, endothelial progenitor cells, and osteoblasts) in fracture repair. Finally, this paper elaborates on the potential challenges and future directions for the development of novel exosome-based therapeutic strategies for clinical fracture repair.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"30 ","pages":"Pages 389-402"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425001531","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Fractures primarily result from high-energy trauma, leading to structural discontinuity of bone tissue. Contemporary therapeutic approaches continue to face persistent challenges including nonunion, infection, and inflammatory complications that pose significant clinical management difficulties. Emerging evidence demonstrates that extracellular vesicles (EVs), particularly exosomes, serve as critical mediators in diverse pathophysiological processes. Accumulating studies reveal that exosomal cargos enhance osteogenesis and angiogenesis through dynamic regulation of cellular components and molecular networks within the bone remodeling microenvironment, thereby potentiating fracture healing cascades. This comprehensive review systematically examines the mechanistic contributions of exosomes in coordinating osteoblastic differentiation, osteoclastic activity modulation, and neovascularization processes. In addition, we describe the role of exosomes from different cellular sources (e.g., mesenchymal stem cells, endothelial progenitor cells, and osteoblasts) in fracture repair. Finally, this paper elaborates on the potential challenges and future directions for the development of novel exosome-based therapeutic strategies for clinical fracture repair.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.