Fragmentomic-based algorithm to computationally predict tumor-somatic, germline, and clonal hematopoiesis variant origin in liquid biopsy

Derek W. Brown , Daokun Sun , Alexander D. Fine , Shai He , Michael McDevitt , Kerriann Pontbriand , Eliana Polisecki , Angela Kou , Mingyue Li , Shumeng Zhang , Zheng Kuang , David Fabrizio , Russell W. Madison , Jie He , Zoe June Assaf , Thomas Powles , Christopher Sweeney , David Gandara , Emmanuel S. Antonarakis , Lee A. Albacker , Chang Xu
{"title":"Fragmentomic-based algorithm to computationally predict tumor-somatic, germline, and clonal hematopoiesis variant origin in liquid biopsy","authors":"Derek W. Brown ,&nbsp;Daokun Sun ,&nbsp;Alexander D. Fine ,&nbsp;Shai He ,&nbsp;Michael McDevitt ,&nbsp;Kerriann Pontbriand ,&nbsp;Eliana Polisecki ,&nbsp;Angela Kou ,&nbsp;Mingyue Li ,&nbsp;Shumeng Zhang ,&nbsp;Zheng Kuang ,&nbsp;David Fabrizio ,&nbsp;Russell W. Madison ,&nbsp;Jie He ,&nbsp;Zoe June Assaf ,&nbsp;Thomas Powles ,&nbsp;Christopher Sweeney ,&nbsp;David Gandara ,&nbsp;Emmanuel S. Antonarakis ,&nbsp;Lee A. Albacker ,&nbsp;Chang Xu","doi":"10.1016/j.jlb.2025.100311","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Genomic profiling of tumors by liquid biopsy (LBx) is a pragmatic alternative to profiling tissue. Despite recent methodologic advances, clonal hematopoiesis (CH) variants arising from hematopoietic stem cells may confound LBx results. Distinguishing the origin of variants detected by LBx will greatly enhance treatment decision-making for patients with cancer.</div></div><div><h3>Experimental design</h3><div>We sequenced DNA isolated from paired plasma and white blood cells (WBC) at equal depth to train (n = 1977) and validate (n = 658) Variant Origin Prediction (VOP), a machine learning algorithm that leverages fragmentomics to generate probabilities that a short variant (SV) detected by LBx is tumor-somatic, germline, or CH in origin. The algorithm's classifications were validated for accuracy using paired WBC DNA and for reproducibility using LBx replicates.</div></div><div><h3>Results</h3><div>We show that 68% of LBx detected at least one reportable variant of CH origin. Our fragmentomic-based algorithm differentiated reportable tumor and CH variants with high sensitivity, high positive predictive value (PPA &gt;93%, PPV &gt;91%), and high reproducibility (&gt;94%). Critically, VOP performs well for SVs with VAFs ≤1% (PPV &gt;90%), as well as in genes known to harbor both CH and tumor-somatic SVs, such as <em>TP53</em> (PPV &gt;88%). In a longitudinal cohort of 422 metastatic castration-resistant prostate cancer (mCRPC) cases, VOP accurately predicted baseline variant origins, and allowed separate tracking of tumor-somatic and CH variants, including newly detected variants, at subsequent timepoints.</div></div><div><h3>Conclusions</h3><div>VOP is a highly accurate and reproducible method to predict the origin of SVs detected in LBx without reliance on WBC sequencing. VOP can reduce inappropriate use of targeted therapies and their toxicities for patients with variants of CH origin and enables accurate tumor profiling and monitoring.</div></div>","PeriodicalId":101235,"journal":{"name":"The Journal of Liquid Biopsy","volume":"9 ","pages":"Article 100311"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Liquid Biopsy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295019542500027X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Genomic profiling of tumors by liquid biopsy (LBx) is a pragmatic alternative to profiling tissue. Despite recent methodologic advances, clonal hematopoiesis (CH) variants arising from hematopoietic stem cells may confound LBx results. Distinguishing the origin of variants detected by LBx will greatly enhance treatment decision-making for patients with cancer.

Experimental design

We sequenced DNA isolated from paired plasma and white blood cells (WBC) at equal depth to train (n = 1977) and validate (n = 658) Variant Origin Prediction (VOP), a machine learning algorithm that leverages fragmentomics to generate probabilities that a short variant (SV) detected by LBx is tumor-somatic, germline, or CH in origin. The algorithm's classifications were validated for accuracy using paired WBC DNA and for reproducibility using LBx replicates.

Results

We show that 68% of LBx detected at least one reportable variant of CH origin. Our fragmentomic-based algorithm differentiated reportable tumor and CH variants with high sensitivity, high positive predictive value (PPA >93%, PPV >91%), and high reproducibility (>94%). Critically, VOP performs well for SVs with VAFs ≤1% (PPV >90%), as well as in genes known to harbor both CH and tumor-somatic SVs, such as TP53 (PPV >88%). In a longitudinal cohort of 422 metastatic castration-resistant prostate cancer (mCRPC) cases, VOP accurately predicted baseline variant origins, and allowed separate tracking of tumor-somatic and CH variants, including newly detected variants, at subsequent timepoints.

Conclusions

VOP is a highly accurate and reproducible method to predict the origin of SVs detected in LBx without reliance on WBC sequencing. VOP can reduce inappropriate use of targeted therapies and their toxicities for patients with variants of CH origin and enables accurate tumor profiling and monitoring.
基于片段组学的计算预测液体活检中肿瘤-体细胞、生殖系和克隆造血变异起源的算法
目的通过液体活检(LBx)进行肿瘤基因组谱分析是一种实用的替代组织谱分析方法。尽管最近在方法上取得了进展,但来自造血干细胞的克隆造血(CH)变异可能会混淆LBx结果。区分LBx检测到的变异的起源将大大提高癌症患者的治疗决策。实验设计我们对从配对血浆和白细胞(WBC)中分离的DNA进行了等深测序,以训练(n = 1977)并验证(n = 658)变异起源预测(VOP),这是一种机器学习算法,利用片段组学来生成LBx检测到的短变异(SV)起源为肿瘤-体细胞、种系或CH的概率。使用配对的WBC DNA验证了算法分类的准确性,并使用LBx重复验证了算法分类的可重复性。结果68%的LBx检测到至少一种可报告的CH来源变异。我们基于片段组学的算法区分可报告的肿瘤和CH变异具有高灵敏度、高阳性预测值(PPA >93%, PPV >91%)和高重现性(>94%)。关键的是,VOP对于VAFs≤1% (PPV >90%)的SVs,以及已知携带CH和肿瘤-体细胞SVs的基因,如TP53 (PPV >88%)表现良好。在422例转移性去势抵抗性前列腺癌(mCRPC)病例的纵向队列中,VOP准确地预测了基线变异起源,并允许在随后的时间点单独跟踪肿瘤-体细胞和CH变异,包括新检测到的变异。结论vop方法在预测LBx中检测到的SVs来源时,不依赖于WBC测序,具有较高的准确性和可重复性。VOP可以减少靶向治疗的不当使用及其对CH变异患者的毒性,并实现准确的肿瘤分析和监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信