BIPV-driven smart vertical greenhouses: a water energy food environment nexus framework for sustainable urban agriculture

IF 8 Q1 ENERGY & FUELS
Yazdan Alvari, Majid Zandi, Ali Jahangiri, Mohammad Ameri, Aslan Gholami, Poroushat Shahidi, Seyed Ali Mousavi
{"title":"BIPV-driven smart vertical greenhouses: a water energy food environment nexus framework for sustainable urban agriculture","authors":"Yazdan Alvari,&nbsp;Majid Zandi,&nbsp;Ali Jahangiri,&nbsp;Mohammad Ameri,&nbsp;Aslan Gholami,&nbsp;Poroushat Shahidi,&nbsp;Seyed Ali Mousavi","doi":"10.1016/j.nexus.2025.100473","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the inefficiencies and environmental burdens of conventional urban greenhouses by experimentally evaluating a building integrated solar-powered vertical greenhouse system designed for sustainable food production. A stepwise methodology is employed, in which energy audits defined system demands, followed by real-time measurements and performance simulations of photovoltaic energy integration. Three configurations were assessed including a conventional greenhouse, a smart greenhouse powered entirely by the grid electricity, and a smart greenhouse supplied by an integrated solar energy system with grid backup. The solar-powered system achieved 86 percent annual energy self-sufficiency, supplying 20,591 kWh of electricity and requiring minimal grid support. Additionally, real-world data were used to validate a modified simulation model accounting for environmental factors such as dust accumulation and aging, achieving a performance ratio of 82.6 percent. Economically, the system demonstrated a payback period of three years and a 17 percent internal rate of return, while environmentally it reduced annual carbon dioxide emissions by 4843 kg. Additionally, the closed-loop system achieved up to 90 percent water savings. This research contributes an experimentally validated, resource-efficient model for integrating solar energy with vertical food production systems tailored to urban sustainability goals.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"19 ","pages":"Article 100473"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125001147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the inefficiencies and environmental burdens of conventional urban greenhouses by experimentally evaluating a building integrated solar-powered vertical greenhouse system designed for sustainable food production. A stepwise methodology is employed, in which energy audits defined system demands, followed by real-time measurements and performance simulations of photovoltaic energy integration. Three configurations were assessed including a conventional greenhouse, a smart greenhouse powered entirely by the grid electricity, and a smart greenhouse supplied by an integrated solar energy system with grid backup. The solar-powered system achieved 86 percent annual energy self-sufficiency, supplying 20,591 kWh of electricity and requiring minimal grid support. Additionally, real-world data were used to validate a modified simulation model accounting for environmental factors such as dust accumulation and aging, achieving a performance ratio of 82.6 percent. Economically, the system demonstrated a payback period of three years and a 17 percent internal rate of return, while environmentally it reduced annual carbon dioxide emissions by 4843 kg. Additionally, the closed-loop system achieved up to 90 percent water savings. This research contributes an experimentally validated, resource-efficient model for integrating solar energy with vertical food production systems tailored to urban sustainability goals.
bipv驱动的智能垂直温室:可持续城市农业的水、能、粮、环境联系框架
本研究通过实验评估为可持续粮食生产而设计的建筑集成太阳能垂直温室系统,解决了传统城市温室的低效率和环境负担。采用渐进式方法,其中能源审计定义系统需求,然后实时测量和光伏能源集成的性能模拟。评估了三种配置,包括传统温室,完全由电网供电的智能温室,以及由电网备份的集成太阳能系统供电的智能温室。太阳能供电系统实现了86%的年能源自给自足,提供20,591千瓦时的电力,并且只需要最低限度的电网支持。此外,利用真实世界的数据验证了考虑灰尘积累和老化等环境因素的改进模拟模型,实现了82.6%的性能比。从经济角度来看,该系统的投资回收期为三年,内部回报率为17%,而在环境方面,它每年减少了4843公斤的二氧化碳排放量。此外,闭环系统实现了高达90%的节水。本研究提供了一个经过实验验证的资源效率模型,用于将太阳能与适合城市可持续发展目标的垂直粮食生产系统相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信