{"title":"Cytoskeletal scaffolding of NaVs and KVs in neocortical pyramidal neurons: Implications for neuronal signaling and plasticity","authors":"Carina C. Elvira , Paul M. Jenkins","doi":"10.1016/j.ceb.2025.102570","DOIUrl":null,"url":null,"abstract":"<div><div>The initiation and propagation of action potentials (APs) depend on the precise localization of voltage-gated sodium (Na<sub>V</sub>) and potassium (K<sub>V</sub>) channels in neurons. In neocortical pyramidal neurons, Na<sub>V</sub>1.2 and Na<sub>V</sub>1.6 are key at the axon initial segment (AIS) and nodes of Ranvier (noR), driving AP initiation and propagation. Na<sub>V</sub>1.2 also supports AP backpropagation in the soma and dendrites. Ankyrin-G anchors these channels at the AIS and noR, while new findings reveal that ankyrin-B scaffolds Na<sub>V</sub>1.2 in dendrites. This review highlights how ankyrins stabilize Na<sub>V</sub> and K<sub>V</sub> channels across neuronal domains, ensuring proper function crucial for excitability, synaptic plasticity, and signaling. Recent findings explore how ankyrins differentially localize Na<sub>V</sub>1.2 and Na<sub>V</sub>1.6, with implications for understanding neurological disorders linked to disrupted channel localization.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"96 ","pages":"Article 102570"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425001085","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The initiation and propagation of action potentials (APs) depend on the precise localization of voltage-gated sodium (NaV) and potassium (KV) channels in neurons. In neocortical pyramidal neurons, NaV1.2 and NaV1.6 are key at the axon initial segment (AIS) and nodes of Ranvier (noR), driving AP initiation and propagation. NaV1.2 also supports AP backpropagation in the soma and dendrites. Ankyrin-G anchors these channels at the AIS and noR, while new findings reveal that ankyrin-B scaffolds NaV1.2 in dendrites. This review highlights how ankyrins stabilize NaV and KV channels across neuronal domains, ensuring proper function crucial for excitability, synaptic plasticity, and signaling. Recent findings explore how ankyrins differentially localize NaV1.2 and NaV1.6, with implications for understanding neurological disorders linked to disrupted channel localization.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.