Boundedness and reproducing kernels of multiplier operators in the Fourier-Laguerre setting

IF 1.2 3区 数学 Q1 MATHEMATICS
Raoudha Laffi
{"title":"Boundedness and reproducing kernels of multiplier operators in the Fourier-Laguerre setting","authors":"Raoudha Laffi","doi":"10.1016/j.jmaa.2025.129886","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the Laguerre multiplier operator <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>u</mi><mo>,</mo><mi>β</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> within the Fourier-Laguerre transform framework. We begin by deriving Calderón reproducing formulas, including an inversion formula and a method for approximating square-integrable functions. We then establish uncertainty principles for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>u</mi><mo>,</mo><mi>β</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span>, extending the Pauli-Weyl inequality and introducing a concentration-type inequality. These results demonstrate the enhanced capabilities of the multiplier operator compared to the classical Fourier transform, offering improved uncertainty bounds and advanced tools for harmonic analysis in the Fourier-Laguerre context.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129886"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006675","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the Laguerre multiplier operator Mu,βα within the Fourier-Laguerre transform framework. We begin by deriving Calderón reproducing formulas, including an inversion formula and a method for approximating square-integrable functions. We then establish uncertainty principles for Mu,βα, extending the Pauli-Weyl inequality and introducing a concentration-type inequality. These results demonstrate the enhanced capabilities of the multiplier operator compared to the classical Fourier transform, offering improved uncertainty bounds and advanced tools for harmonic analysis in the Fourier-Laguerre context.
傅里叶-拉盖尔环境下乘数算子的有界性和复现核
本文研究了傅里叶-拉盖尔变换框架下的拉盖尔乘子算子Mu,βα。我们首先推导Calderón再现公式,包括反演公式和近似平方可积函数的方法。然后,我们建立了Mu,βα的不确定性原理,推广了Pauli-Weyl不等式并引入了浓度型不等式。这些结果表明,与经典傅里叶变换相比,乘数算子的能力得到了增强,为傅里叶-拉盖尔环境中的谐波分析提供了改进的不确定性界限和先进的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信