Global maximum principle for optimal control of stochastic Volterra equations with singular kernels: An infinite dimensional approach

IF 2.4 2区 数学 Q1 MATHEMATICS
Yushi Hamaguchi
{"title":"Global maximum principle for optimal control of stochastic Volterra equations with singular kernels: An infinite dimensional approach","authors":"Yushi Hamaguchi","doi":"10.1016/j.jde.2025.113618","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider optimal control problems of stochastic Volterra equations (SVEs) with singular kernels, where the control domain is not necessarily convex. We establish a global maximum principle by means of the spike variation technique. To do so, we first show a Taylor type expansion of the controlled SVE with respect to the spike variation, where the convergence rates of the remainder terms are characterized by the singularity of the kernels. Next, assuming additional structure conditions for the kernels, we convert the variational SVEs appearing in the expansion to their infinite dimensional lifts. Then, we derive first and second order adjoint equations in form of infinite dimensional backward stochastic evolution equations (BSEEs) on weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> spaces. Moreover, we show the well-posedness of the new class of BSEEs on weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> spaces in a general setting.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113618"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500645X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider optimal control problems of stochastic Volterra equations (SVEs) with singular kernels, where the control domain is not necessarily convex. We establish a global maximum principle by means of the spike variation technique. To do so, we first show a Taylor type expansion of the controlled SVE with respect to the spike variation, where the convergence rates of the remainder terms are characterized by the singularity of the kernels. Next, assuming additional structure conditions for the kernels, we convert the variational SVEs appearing in the expansion to their infinite dimensional lifts. Then, we derive first and second order adjoint equations in form of infinite dimensional backward stochastic evolution equations (BSEEs) on weighted L2 spaces. Moreover, we show the well-posedness of the new class of BSEEs on weighted L2 spaces in a general setting.
奇异核随机Volterra方程最优控制的全局极大值原理:一种无限维方法
本文研究奇异核随机Volterra方程(SVEs)的最优控制问题,其中控制域不一定是凸的。利用尖峰变分技术建立了全局极值原理。为此,我们首先展示了受控SVE关于尖峰变化的泰勒型展开式,其中剩余项的收敛速率以核的奇异性为特征。接下来,假设核的附加结构条件,我们将展开式中出现的变分sve转换为它们的无限维提升。然后,我们在加权L2空间上导出了无限维倒向随机演化方程(BSEEs)形式的一阶和二阶伴随方程。此外,在一般情况下,我们证明了一类新的bsee在加权L2空间上的适定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信