Scalable ultrathin solid electrolyte from recycled Antheraea pernyi silk with regulated ion transport for solid-state Li–S batteries

IF 42.9 Q1 ELECTROCHEMISTRY
Lu Nie , Yang Li , Xiaoyan Wu , Mengtian Zhang , Xinru Wu , Xiao Xiao , Runhua Gao , Zhihong Piao , Xian Wu , Ya Song , Shaojie Chen , Yanfei Zhu , Yi Yu , Shengjie Ling , Ke Zheng , Guangmin Zhou
{"title":"Scalable ultrathin solid electrolyte from recycled Antheraea pernyi silk with regulated ion transport for solid-state Li–S batteries","authors":"Lu Nie ,&nbsp;Yang Li ,&nbsp;Xiaoyan Wu ,&nbsp;Mengtian Zhang ,&nbsp;Xinru Wu ,&nbsp;Xiao Xiao ,&nbsp;Runhua Gao ,&nbsp;Zhihong Piao ,&nbsp;Xian Wu ,&nbsp;Ya Song ,&nbsp;Shaojie Chen ,&nbsp;Yanfei Zhu ,&nbsp;Yi Yu ,&nbsp;Shengjie Ling ,&nbsp;Ke Zheng ,&nbsp;Guangmin Zhou","doi":"10.1016/j.esci.2025.100395","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrathin solid-state electrolytes (SSEs) with rapid Li<sup>+</sup> transport are ideal for developing high-energy-density all-solid-state lithium metal batteries. However, a significant challenge remains in balancing the intrinsic trade-off between electrochemical performance and mechanical properties. Herein, <em>Antheraea pernyi</em> fibers recycled from waste silk textiles are utilized as the raw materials to construct a porous and strong supporting skeleton for fabricating ultrathin SSE. This skeleton not only provides efficient three-dimensional Li<sup>+</sup> transport channels, but also immobilizes Li-salt anions, resulting in homogenized Li<sup>+</sup> flux and local current density distribution, thereby promoting uniform Li deposition. As a result, the obtained ultrathin SSE exhibits excellent ion-regulated properties, enhanced electrochemical stability, and superior dendrite suppression. Additionally, the formation of an inorganic-rich solid electrolyte interface layer is beneficial for stabilizing the interface contact between the SSE and Li anode. The solid-state Li|sulfurized polyacrylonitrile (Li|SPAN) cell delivers an excellent capacity retention of 92.3% after 500 cycles at 1 ​C. Moreover, the prepared high-voltage Li|LiCoO<sub>2</sub> pouch cell exhibits a capacity retention of 90.1% at 0.2 ​C after 200 cycles. This work presents an economically effective strategy for reutilizing waste textiles as ion-conducting mechanical supports for energy storage applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 4","pages":"Article 100395"},"PeriodicalIF":42.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141725000254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrathin solid-state electrolytes (SSEs) with rapid Li+ transport are ideal for developing high-energy-density all-solid-state lithium metal batteries. However, a significant challenge remains in balancing the intrinsic trade-off between electrochemical performance and mechanical properties. Herein, Antheraea pernyi fibers recycled from waste silk textiles are utilized as the raw materials to construct a porous and strong supporting skeleton for fabricating ultrathin SSE. This skeleton not only provides efficient three-dimensional Li+ transport channels, but also immobilizes Li-salt anions, resulting in homogenized Li+ flux and local current density distribution, thereby promoting uniform Li deposition. As a result, the obtained ultrathin SSE exhibits excellent ion-regulated properties, enhanced electrochemical stability, and superior dendrite suppression. Additionally, the formation of an inorganic-rich solid electrolyte interface layer is beneficial for stabilizing the interface contact between the SSE and Li anode. The solid-state Li|sulfurized polyacrylonitrile (Li|SPAN) cell delivers an excellent capacity retention of 92.3% after 500 cycles at 1 ​C. Moreover, the prepared high-voltage Li|LiCoO2 pouch cell exhibits a capacity retention of 90.1% at 0.2 ​C after 200 cycles. This work presents an economically effective strategy for reutilizing waste textiles as ion-conducting mechanical supports for energy storage applications.

Abstract Image

利用再生柞蚕丝制备的可伸缩超薄固体电解质,可调节离子传输,用于固态锂电池
具有快速锂离子传输的超薄固态电解质是开发高能量密度全固态锂金属电池的理想材料。然而,如何平衡电化学性能和机械性能之间的内在平衡仍然是一个重大的挑战。本研究以废丝织物回收的柞蚕纤维为原料,构建了多孔且坚固的支撑骨架,用于制作超薄SSE。该骨架不仅提供了高效的三维Li+运输通道,还固定了Li-盐阴离子,使Li+通量和局部电流密度分布均质化,从而促进了Li的均匀沉积。结果表明,制备的超薄SSE具有优异的离子调控性能、增强的电化学稳定性和优异的枝晶抑制性能。此外,形成富无机固体电解质界面层有利于稳定SSE与锂阳极之间的界面接触。固态Li|硫化聚丙烯腈(Li|SPAN)电池在1℃下循环500次后,容量保持率达到92.3%。此外,制备的高压Li|LiCoO2袋状电池在0.2℃下循环200次后的容量保持率为90.1%。这项工作提出了一种经济有效的策略,利用废旧纺织品作为离子传导机械支持储能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信