AI-enabled full-body dynamic avatar reconstruction using triboelectric smart clothing for metaverse applications

IF 42.9 Q1 ELECTROCHEMISTRY
Chi Zhang , Lei Zhang , Yu Tian , Zhengang An, Bo Li, Dachao Li
{"title":"AI-enabled full-body dynamic avatar reconstruction using triboelectric smart clothing for metaverse applications","authors":"Chi Zhang ,&nbsp;Lei Zhang ,&nbsp;Yu Tian ,&nbsp;Zhengang An,&nbsp;Bo Li,&nbsp;Dachao Li","doi":"10.1016/j.esci.2025.100373","DOIUrl":null,"url":null,"abstract":"<div><div>Full-body avatar reconstruction offers users immersive and interactive experiences in virtual space, which are crucial for the advancement of metaverse applications. However, traditional hardware solutions, reliant on optical cameras or inertial sensors, are hampered by privacy concerns, spatial limitations, high costs, and calibration challenges. Here, we propose AI-enabled smart clothing that seamlessly integrates triboelectric strain-sensing fibers (TSSFs) and AI algorithms with commercial fitness suits to achieve precise dynamic 3D reconstruction of body movement. TSSFs enable the dynamic capture of body postures and excel in sensitivity, linearity, and strain range, while maintaining mechanical stability, temperature resilience, and washability. The integrated algorithms accurately decouple posture signals — distinguishing between similar postures with the 1D-CNN algorithm, compensating for body-shape differences via a calibration algorithm, and determining spatial elements for avatar reconstruction using a decision-tree algorithm. Finally, leveraging Unity-3D, we achieve ultra-accurate dynamic 3D avatars with a joint angle error of &lt;3.63° and demonstrate their effectiveness using VR fitness and entertainment applications, showing how they can offer users standardized yet engaging experiences.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 4","pages":"Article 100373"},"PeriodicalIF":42.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141725000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Full-body avatar reconstruction offers users immersive and interactive experiences in virtual space, which are crucial for the advancement of metaverse applications. However, traditional hardware solutions, reliant on optical cameras or inertial sensors, are hampered by privacy concerns, spatial limitations, high costs, and calibration challenges. Here, we propose AI-enabled smart clothing that seamlessly integrates triboelectric strain-sensing fibers (TSSFs) and AI algorithms with commercial fitness suits to achieve precise dynamic 3D reconstruction of body movement. TSSFs enable the dynamic capture of body postures and excel in sensitivity, linearity, and strain range, while maintaining mechanical stability, temperature resilience, and washability. The integrated algorithms accurately decouple posture signals — distinguishing between similar postures with the 1D-CNN algorithm, compensating for body-shape differences via a calibration algorithm, and determining spatial elements for avatar reconstruction using a decision-tree algorithm. Finally, leveraging Unity-3D, we achieve ultra-accurate dynamic 3D avatars with a joint angle error of <3.63° and demonstrate their effectiveness using VR fitness and entertainment applications, showing how they can offer users standardized yet engaging experiences.

Abstract Image

使用摩擦电智能服装进行虚拟世界应用的人工智能支持的全身动态化身重建
全身化身重建为用户提供了虚拟空间的沉浸式和交互式体验,这对虚拟世界应用的发展至关重要。然而,传统的硬件解决方案依赖于光学相机或惯性传感器,受到隐私问题、空间限制、高成本和校准挑战的阻碍。在这里,我们提出了人工智能智能服装,将摩擦电应变传感纤维(tssf)和人工智能算法与商业健身服无缝集成,以实现身体运动的精确动态3D重建。tssf能够动态捕捉身体姿势,并在灵敏度,线性度和应变范围方面表现出色,同时保持机械稳定性,温度弹性和可洗涤性。集成的算法精确地解耦姿态信号——用1D-CNN算法区分相似的姿态,通过校准算法补偿体型差异,并使用决策树算法确定空间元素以进行化身重建。最后,利用Unity-3D,我们实现了关节角度误差为3.63°的超精确动态3D化身,并通过VR健身和娱乐应用程序展示了它们的有效性,展示了它们如何为用户提供标准化但引人入胜的体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信