A versatile catalyst in situ self-cleaning method for excellent cycling and operational stability in small-molecule electrooxidation

IF 42.9 Q1 ELECTROCHEMISTRY
Zhi-Xiang Yuan , Yingjie Gao , Shan-Qing Li , Jie Xuan , Xin-Yu Sheng , Fei Zhang , Yao Zheng , Ping Chen
{"title":"A versatile catalyst in situ self-cleaning method for excellent cycling and operational stability in small-molecule electrooxidation","authors":"Zhi-Xiang Yuan ,&nbsp;Yingjie Gao ,&nbsp;Shan-Qing Li ,&nbsp;Jie Xuan ,&nbsp;Xin-Yu Sheng ,&nbsp;Fei Zhang ,&nbsp;Yao Zheng ,&nbsp;Ping Chen","doi":"10.1016/j.esci.2025.100375","DOIUrl":null,"url":null,"abstract":"<div><div>The electrochemical oxidation of small molecules is a promising approach in chemical synthesis, but catalyst deactivation due to the accumulation of poorly soluble products on the surface remains a significant challenge. To address this, we propose an <em>in situ</em> cleaning method using an additional oxygen evolution reaction (OER) to regenerate degraded catalysts. The OER facilitates the removal of insoluble products, thereby restoring active sites. Taking the electrochemical oxidation of tetrahydroisoquinoline (THIQ) to dihydroisoquinoline (DHIQ) as an example, we develop a highly active γ-Ni(Co)OOH anode. The OER generates oxygen, promoting the oxidation of DHIQ to IQ, which is more soluble, thus effectively removing DHIQ from the catalyst surface. After 120 cycles in a small-scale pilot test, the current stability exceeds 98%, and the product selectivity reaches 95%. This method demonstrates the highest stability to date, outperforming previous catalysts 15-fold, and can be applied to other electrocatalytic systems facing similar deactivation issues.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 4","pages":"Article 100375"},"PeriodicalIF":42.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141725000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical oxidation of small molecules is a promising approach in chemical synthesis, but catalyst deactivation due to the accumulation of poorly soluble products on the surface remains a significant challenge. To address this, we propose an in situ cleaning method using an additional oxygen evolution reaction (OER) to regenerate degraded catalysts. The OER facilitates the removal of insoluble products, thereby restoring active sites. Taking the electrochemical oxidation of tetrahydroisoquinoline (THIQ) to dihydroisoquinoline (DHIQ) as an example, we develop a highly active γ-Ni(Co)OOH anode. The OER generates oxygen, promoting the oxidation of DHIQ to IQ, which is more soluble, thus effectively removing DHIQ from the catalyst surface. After 120 cycles in a small-scale pilot test, the current stability exceeds 98%, and the product selectivity reaches 95%. This method demonstrates the highest stability to date, outperforming previous catalysts 15-fold, and can be applied to other electrocatalytic systems facing similar deactivation issues.

Abstract Image

一种多用途催化剂原位自清洁方法,在小分子电氧化中具有良好的循环和操作稳定性
小分子的电化学氧化是一种很有前途的化学合成方法,但由于表面难溶产物的积累而导致催化剂失活仍然是一个重大挑战。为了解决这个问题,我们提出了一种使用额外的析氧反应(OER)来再生降解催化剂的原位清洗方法。OER有助于去除不溶性产物,从而恢复活性位点。以四氢异喹啉(THIQ)电化学氧化成二氢异喹啉(DHIQ)为例,研制了一种高活性γ-Ni(Co)OOH阳极。OER产生氧气,促进DHIQ氧化为更易溶解的IQ,从而有效地将DHIQ从催化剂表面去除。经过120次循环的小规模中试,电流稳定性超过98%,产品选择性达到95%。该方法证明了迄今为止最高的稳定性,比以前的催化剂性能高出15倍,并且可以应用于面临类似失活问题的其他电催化系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信