Kuangbing Wang , Zhan Li , Bin Wu , Donglei Yan , Ziwen Kang , Yongda Yan , Shunyu Chang , Yanquan Geng
{"title":"Modeling and experimental investigation of the effect of sample tilt on the machining performance in AFM-based nanofabrication","authors":"Kuangbing Wang , Zhan Li , Bin Wu , Donglei Yan , Ziwen Kang , Yongda Yan , Shunyu Chang , Yanquan Geng","doi":"10.1016/j.precisioneng.2025.07.012","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic force microscope (AFM)-based nanoscale machining has been proven to be an effective method for fabricating nanostructures. Through a combination of theoretical analysis and experimental investigation, the impact of sample tilt on the performance of AFM-based nanoscale machining is systematically examined. Three typical scratching directions, along the cantilever axis, perpendicular to the cantilever axis, and away from the cantilever axis, are considered in this study. Theoretical models are developed for each of these directions, and experimental validation is conducted. The results demonstrate that sample tilt has a significant impact on machining outcomes, primarily attributed to variations in the force applied by the AFM tip and the load-bearing area. These factors are influenced by both the tilt angle and the scratching direction. Experimental tests reveal that the developed models can precisely predict the impact of sample tilt on machining outcomes. Furthermore, this study investigates the relationship between machining depth and load for the three scratching directions under tilted sample conditions. Finally, we explored the impact of the friction coefficient and probe geometry on the machining results. This research provides robust theoretical support for comprehending the influence of sample tilt on AFM-based nanoscale machining and offers significant insights into optimizing the machining process.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"96 ","pages":"Pages 497-506"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925002211","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic force microscope (AFM)-based nanoscale machining has been proven to be an effective method for fabricating nanostructures. Through a combination of theoretical analysis and experimental investigation, the impact of sample tilt on the performance of AFM-based nanoscale machining is systematically examined. Three typical scratching directions, along the cantilever axis, perpendicular to the cantilever axis, and away from the cantilever axis, are considered in this study. Theoretical models are developed for each of these directions, and experimental validation is conducted. The results demonstrate that sample tilt has a significant impact on machining outcomes, primarily attributed to variations in the force applied by the AFM tip and the load-bearing area. These factors are influenced by both the tilt angle and the scratching direction. Experimental tests reveal that the developed models can precisely predict the impact of sample tilt on machining outcomes. Furthermore, this study investigates the relationship between machining depth and load for the three scratching directions under tilted sample conditions. Finally, we explored the impact of the friction coefficient and probe geometry on the machining results. This research provides robust theoretical support for comprehending the influence of sample tilt on AFM-based nanoscale machining and offers significant insights into optimizing the machining process.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.