Matthew S. Kent , Teuntje P. Hollaar , Will Meredith , Hendrik Nowak , Phillip E. Jardine , Wesley T. Fraser , Bas van de Schootbrugge , Barry H. Lomax
{"title":"Simulated charcoalification of Lycopodium spores: The usefulness of spore colour and chemistry for understanding the fossil record","authors":"Matthew S. Kent , Teuntje P. Hollaar , Will Meredith , Hendrik Nowak , Phillip E. Jardine , Wesley T. Fraser , Bas van de Schootbrugge , Barry H. Lomax","doi":"10.1016/j.revpalbo.2025.105405","DOIUrl":null,"url":null,"abstract":"<div><div>The fossil pollen and spore (sporomorph) record includes occurrences of darkened grains typically attributed to thermal maturation from geological processes. However, zones of sporomorph darkening and colour variability within samples sometimes coincide with mass extinction events. Although bimodal sporomorph coloration is relatively common, its abundance often increases markedly during such intervals. These observations have prompted alternative explanatory hypotheses suggesting either environmental stresses on parent plants or possibly reworking of sporomorphs. Here, we propose another explanation: variation in sporomorph colour and darkness may result from combustion in wildfires during large-scale ecological disturbances prior to fossilisation. To test this hypothesis, we investigate how pyrolysis might impact <em>Lycopodium</em> spore colour and darkness. Untreated, intact spores were combusted at temperature increments from 150 to 800 °C. We quantified spore colour by measuring red, green and blue (RGB) intensities and by converting them to Palynomorph Darkness Index (PDI) values. As well as measuring various physical attributes, we used Fourier-transform infrared (FTIR) spectroscopy to determine spore chemistry. As pyrolysis temperature increased, spores darkened, lost mass, and shrank. FTIR analysis revealed three distinct chemical states between non-pyrolysed spores and those heated to 375 °C. Physical changes correlated more strongly with temperature, forming different groupings than those of the chemical data, both partially explaining colour change due to pyrolysis. With these data, we establish a baseline for comparison in a future artificial thermal maturation study, which will help determine whether pre-diagenetic combustion could influence, and be preserved in, the physical and chemical properties of fossil sporomorphs.</div></div>","PeriodicalId":54488,"journal":{"name":"Review of Palaeobotany and Palynology","volume":"343 ","pages":"Article 105405"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Palaeobotany and Palynology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034666725001265","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The fossil pollen and spore (sporomorph) record includes occurrences of darkened grains typically attributed to thermal maturation from geological processes. However, zones of sporomorph darkening and colour variability within samples sometimes coincide with mass extinction events. Although bimodal sporomorph coloration is relatively common, its abundance often increases markedly during such intervals. These observations have prompted alternative explanatory hypotheses suggesting either environmental stresses on parent plants or possibly reworking of sporomorphs. Here, we propose another explanation: variation in sporomorph colour and darkness may result from combustion in wildfires during large-scale ecological disturbances prior to fossilisation. To test this hypothesis, we investigate how pyrolysis might impact Lycopodium spore colour and darkness. Untreated, intact spores were combusted at temperature increments from 150 to 800 °C. We quantified spore colour by measuring red, green and blue (RGB) intensities and by converting them to Palynomorph Darkness Index (PDI) values. As well as measuring various physical attributes, we used Fourier-transform infrared (FTIR) spectroscopy to determine spore chemistry. As pyrolysis temperature increased, spores darkened, lost mass, and shrank. FTIR analysis revealed three distinct chemical states between non-pyrolysed spores and those heated to 375 °C. Physical changes correlated more strongly with temperature, forming different groupings than those of the chemical data, both partially explaining colour change due to pyrolysis. With these data, we establish a baseline for comparison in a future artificial thermal maturation study, which will help determine whether pre-diagenetic combustion could influence, and be preserved in, the physical and chemical properties of fossil sporomorphs.
期刊介绍:
The Review of Palaeobotany and Palynology is an international journal for articles in all fields of palaeobotany and palynology dealing with all groups, ranging from marine palynomorphs to higher land plants. Original contributions and comprehensive review papers should appeal to an international audience. Typical topics include but are not restricted to systematics, evolution, palaeobiology, palaeoecology, biostratigraphy, biochronology, palaeoclimatology, paleogeography, taphonomy, palaeoenvironmental reconstructions, vegetation history, and practical applications of palaeobotany and palynology, e.g. in coal and petroleum geology and archaeology. The journal especially encourages the publication of articles in which palaeobotany and palynology are applied for solving fundamental geological and biological problems as well as innovative and interdisciplinary approaches.