Silvia Candela , Juha Ottelin , Janne Hongisto , Hanna Lehtonen , Anna De Marzi , Alberto Campagnolo , Carlo Scian , Razvan Dima
{"title":"W-Ta alloys processed by Laser-Based Powder Bed Fusion: how microstructure and properties change with Ta concentration","authors":"Silvia Candela , Juha Ottelin , Janne Hongisto , Hanna Lehtonen , Anna De Marzi , Alberto Campagnolo , Carlo Scian , Razvan Dima","doi":"10.1016/j.ijrmhm.2025.107324","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a study of 4 tungsten‐tantalum binary alloys processed by Laser-Based Powder Bed Fusion (PBF-LB) is presented. The evolution of the microstructure and the properties of the material in dependence on the tenor of tantalum inside the alloy was investigated, selecting 0wt.%, 2.5wt.%, 7.5wt.%, and 15wt.% as the Ta concentrations. The optimal process window for each examined alloy was investigated. The introduction of tantalum in the alloy was effective in mitigating the cracks in the tungsten matrix. However, the energy provided to the material in the additive manufacturing process was also determinant for achieving an almost crack-free and low-porosity material. Moreover, the range of concentrations of Ta considered in this work allowed the authors to see that the properties of the binary alloys examined don't lead to a continuous improvement with the addition of Ta, but start decreasing for Ta contents higher than 7.5wt.%. The minimum porosity volume fraction achieved in this study was 0.7 % for the W-7.5wt.%Ta blend. The same alloy showed the highest hardness among the other materials investigated, reaching hardness values above 480 HV<sub>0.5</sub>, approximately 30 % higher than what was obtained for pure tungsten, and with a 50 % increase in the ultimate compressive strength compared to the unalloyed material. XRD analyses confirmed that the tantalum particles solubilize completely inside the tungsten matrix, assuring a good homogeneity of the composition and the absence of segregations and secondary phases inside the additively manufactured parts.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"133 ","pages":"Article 107324"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825002896","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a study of 4 tungsten‐tantalum binary alloys processed by Laser-Based Powder Bed Fusion (PBF-LB) is presented. The evolution of the microstructure and the properties of the material in dependence on the tenor of tantalum inside the alloy was investigated, selecting 0wt.%, 2.5wt.%, 7.5wt.%, and 15wt.% as the Ta concentrations. The optimal process window for each examined alloy was investigated. The introduction of tantalum in the alloy was effective in mitigating the cracks in the tungsten matrix. However, the energy provided to the material in the additive manufacturing process was also determinant for achieving an almost crack-free and low-porosity material. Moreover, the range of concentrations of Ta considered in this work allowed the authors to see that the properties of the binary alloys examined don't lead to a continuous improvement with the addition of Ta, but start decreasing for Ta contents higher than 7.5wt.%. The minimum porosity volume fraction achieved in this study was 0.7 % for the W-7.5wt.%Ta blend. The same alloy showed the highest hardness among the other materials investigated, reaching hardness values above 480 HV0.5, approximately 30 % higher than what was obtained for pure tungsten, and with a 50 % increase in the ultimate compressive strength compared to the unalloyed material. XRD analyses confirmed that the tantalum particles solubilize completely inside the tungsten matrix, assuring a good homogeneity of the composition and the absence of segregations and secondary phases inside the additively manufactured parts.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.