Non-uniqueness for the nonlinear dynamical Lamé system

IF 2.4 2区 数学 Q1 MATHEMATICS
Shunkai Mao , Peng Qu
{"title":"Non-uniqueness for the nonlinear dynamical Lamé system","authors":"Shunkai Mao ,&nbsp;Peng Qu","doi":"10.1016/j.jde.2025.113603","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Cauchy problem for the nonlinear dynamical Lamé system with double wave speeds in a <em>d</em>-dimensional <span><math><mo>(</mo><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> periodic domain. Moreover, the equations can be transformed into a linearly degenerate hyperbolic system. We could construct infinitely many continuous solutions in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> emanating from the same small initial data for <span><math><mi>α</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>60</mn></mrow></mfrac></math></span>. The proof relies on the convex integration scheme. We construct a new class of building blocks with compression structure by using the double wave speeds characteristic of the equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113603"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006308","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Cauchy problem for the nonlinear dynamical Lamé system with double wave speeds in a d-dimensional (d=2,3) periodic domain. Moreover, the equations can be transformed into a linearly degenerate hyperbolic system. We could construct infinitely many continuous solutions in C1,α emanating from the same small initial data for α<160. The proof relies on the convex integration scheme. We construct a new class of building blocks with compression structure by using the double wave speeds characteristic of the equations.
非线性动态lam系统的非唯一性
研究了d维(d=2,3)周期域中具有双波速的非线性动态lam系统的Cauchy问题。此外,方程可以转化为线性退化双曲系统。我们可以从α<;160的相同初始数据中构造无穷多个C1,α的连续解。该证明依赖于凸积分格式。利用方程的双波速特性,构造了一类具有压缩结构的新积木。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信