A comprehensive study on the effectiveness of the stress and damage model parameters in predicting the compression fracture behavior of selective laser melted AlSi10Mg BCC lattices
IF 3.4 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mustafa Güden , Hacer İrem Erten , Recep M. Gorguluarslan , Umut Can Gülletutan , Akın Dağkolu , İstemihan Gökdağ , Ahmet Can Günaydın , Sertaç Altınok , Halil İbrahim Erol , Subhan Namazov
{"title":"A comprehensive study on the effectiveness of the stress and damage model parameters in predicting the compression fracture behavior of selective laser melted AlSi10Mg BCC lattices","authors":"Mustafa Güden , Hacer İrem Erten , Recep M. Gorguluarslan , Umut Can Gülletutan , Akın Dağkolu , İstemihan Gökdağ , Ahmet Can Günaydın , Sertaç Altınok , Halil İbrahim Erol , Subhan Namazov","doi":"10.1016/j.mechmat.2025.105395","DOIUrl":null,"url":null,"abstract":"<div><div>The Johnson and Cook (JC) stress and damage model parameters determined from the machined bulk cylindrical specimens and as-built struts through tension and compression tests were used to model quasi-static compression behavior of selective laser melt-fabricated AlSi10Mg alloy lattices. The lattices had the same cell size (10 mm) and strut diameter (1 mm), but different number of cells (2 × 2 × 2, 10 × 10 × 2 and 5 × 5 × 5) and geometries (sandwich and cubic). Four different sets of JC damage model parameters (brittle and ductile notch-insensitive and compression and tension notch-sensitive) were further implemented in the lattice compression numerical models. The brittle damage model parameters and smaller mesh sizes resulted in cracking the face-sheet corner strut nodes before the occurrence of a bending-dominated initial peak stress. The notch-sensitive damage model parameters exhibited no bent-strut fracture in the middle layers of the lattices and increased the crack initiation strains as compared with the notch-insensitive damage model parameters. Despite significant variations in the initial peak stresses of the tested 2 × 2 × 2 and 10 × 10 × 2 lattices, the implication of the strut micro-tension stress model together with the compression notch-sensitive damage model parameters using 0.25 mm mesh size conservatively approximated the experimental deformation stresses while the machined bulk specimen tension-stress model over predicted the experimental stresses. On the other side, the strut stress model with 0.15 mm mesh size accurately predicted the experimental diagonal shear/fracture mode of struts with a slightly higher numerical initial peak stress. The compression tests on the strut specimens extracted from the as-built lattices yielded similar stress model parameters with the micro-tension tests. The differences between the initial peak stresses of the investigated sandwich and cubic lattices were further explained by the differences in the lattice boundary conditions.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"208 ","pages":"Article 105395"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663625001577","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Johnson and Cook (JC) stress and damage model parameters determined from the machined bulk cylindrical specimens and as-built struts through tension and compression tests were used to model quasi-static compression behavior of selective laser melt-fabricated AlSi10Mg alloy lattices. The lattices had the same cell size (10 mm) and strut diameter (1 mm), but different number of cells (2 × 2 × 2, 10 × 10 × 2 and 5 × 5 × 5) and geometries (sandwich and cubic). Four different sets of JC damage model parameters (brittle and ductile notch-insensitive and compression and tension notch-sensitive) were further implemented in the lattice compression numerical models. The brittle damage model parameters and smaller mesh sizes resulted in cracking the face-sheet corner strut nodes before the occurrence of a bending-dominated initial peak stress. The notch-sensitive damage model parameters exhibited no bent-strut fracture in the middle layers of the lattices and increased the crack initiation strains as compared with the notch-insensitive damage model parameters. Despite significant variations in the initial peak stresses of the tested 2 × 2 × 2 and 10 × 10 × 2 lattices, the implication of the strut micro-tension stress model together with the compression notch-sensitive damage model parameters using 0.25 mm mesh size conservatively approximated the experimental deformation stresses while the machined bulk specimen tension-stress model over predicted the experimental stresses. On the other side, the strut stress model with 0.15 mm mesh size accurately predicted the experimental diagonal shear/fracture mode of struts with a slightly higher numerical initial peak stress. The compression tests on the strut specimens extracted from the as-built lattices yielded similar stress model parameters with the micro-tension tests. The differences between the initial peak stresses of the investigated sandwich and cubic lattices were further explained by the differences in the lattice boundary conditions.
期刊介绍:
Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.