Beta-Amino Carboxylate (BAC) non-aqueous physical solvents for enhanced CO2 separations in pre-combustion carbon capture, industrial CO2 capture, and biogas upgrading processes
Jeffrey T. Culp , Robert L. Thompson , Kathryn H. Smith , David Hopkinson , Nicholas Siefert
{"title":"Beta-Amino Carboxylate (BAC) non-aqueous physical solvents for enhanced CO2 separations in pre-combustion carbon capture, industrial CO2 capture, and biogas upgrading processes","authors":"Jeffrey T. Culp , Robert L. Thompson , Kathryn H. Smith , David Hopkinson , Nicholas Siefert","doi":"10.1016/j.ijggc.2025.104432","DOIUrl":null,"url":null,"abstract":"<div><div>Novel beta-amino carboxylate (BAC) solvents have been synthesized and tested to efficiently capture carbon dioxide (CO<sub>2</sub>) from process gas streams with CO<sub>2</sub> partial pressure intermediate between pre-combustion and post-combustion capture. The BAC solvents have molecular structures characterized by alkyl-substituted amides or esters containing a secondary amine functional group on the second carbon from the carbonyl carbon (referred to as the beta “β” carbon). The ester or amide functional group combined with optimal steric crowding around the amine nitrogen by proximate alkyl groups are tailored to modify the strength of CO<sub>2</sub> binding in the solvent. The solvents possess high CO<sub>2</sub> solubilities and high gas selectivity including good CO<sub>2</sub>/H<sub>2</sub>O selectivity and can be utilized for CO<sub>2</sub> absorption over a range of partial pressures. Due to low volatility, many of the solvents can be operated at or above ambient temperature which eliminates solvent chilling and allows regeneration using low grade waste heat. These novel solvents offer an opportunity for efficient carbon capture for a range of applications including biogas upgrading, hydrogen production, and pre-combustion carbon capture.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"146 ","pages":"Article 104432"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583625001306","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Novel beta-amino carboxylate (BAC) solvents have been synthesized and tested to efficiently capture carbon dioxide (CO2) from process gas streams with CO2 partial pressure intermediate between pre-combustion and post-combustion capture. The BAC solvents have molecular structures characterized by alkyl-substituted amides or esters containing a secondary amine functional group on the second carbon from the carbonyl carbon (referred to as the beta “β” carbon). The ester or amide functional group combined with optimal steric crowding around the amine nitrogen by proximate alkyl groups are tailored to modify the strength of CO2 binding in the solvent. The solvents possess high CO2 solubilities and high gas selectivity including good CO2/H2O selectivity and can be utilized for CO2 absorption over a range of partial pressures. Due to low volatility, many of the solvents can be operated at or above ambient temperature which eliminates solvent chilling and allows regeneration using low grade waste heat. These novel solvents offer an opportunity for efficient carbon capture for a range of applications including biogas upgrading, hydrogen production, and pre-combustion carbon capture.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.