Eight-channel high-speed electrical impedance tomography device implemented on a programmable system on a chip

IF 2.1 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Fausto Andrés Escobar , Carlos Felipe Rengifo , Víctor Hugo Mosquera
{"title":"Eight-channel high-speed electrical impedance tomography device implemented on a programmable system on a chip","authors":"Fausto Andrés Escobar ,&nbsp;Carlos Felipe Rengifo ,&nbsp;Víctor Hugo Mosquera","doi":"10.1016/j.ohx.2025.e00667","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes an electrical impedance tomography (EIT) device based on a programmable system on a chip (PSoc). The EIT-PSoC system is implemented using two PSoC 5LP platforms. A resistive phantom is used to study frame frequency (fps), accuracy (Ac), and signal-to-noise ratio (SNR). A saline phantom, along with both conductive and non-conductive objects, is employed to evaluate the system’s ability to detect changes in impedance distribution. Finally, the dielectric characteristics of the human lower pelvis is emulated using four agar phantoms, allowing an evaluation of the EIT-PSoC system’s performance in response to changes in fluid volume and conductivity. Experiments conducted on the resistive phantom to characterize the EIT-PSoC system demonstrate a frame frequency of 100 fps, a median SNR of 63.59 dB, and an accuracy of 95.39% when using a 0.98 mA sinusoidal current signal at 50 kHz. EIT image reconstruction shows that the proposed system can distinguish impedance changes in the saline phantom. Additionally, by utilizing the global impedance (GI) index and the agar phantoms, the EIT-PSoC system can detect changes in volume and conductivity, making this system a promising alternative for monitoring the volume and conductivity of biological fluids.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"23 ","pages":"Article e00667"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes an electrical impedance tomography (EIT) device based on a programmable system on a chip (PSoc). The EIT-PSoC system is implemented using two PSoC 5LP platforms. A resistive phantom is used to study frame frequency (fps), accuracy (Ac), and signal-to-noise ratio (SNR). A saline phantom, along with both conductive and non-conductive objects, is employed to evaluate the system’s ability to detect changes in impedance distribution. Finally, the dielectric characteristics of the human lower pelvis is emulated using four agar phantoms, allowing an evaluation of the EIT-PSoC system’s performance in response to changes in fluid volume and conductivity. Experiments conducted on the resistive phantom to characterize the EIT-PSoC system demonstrate a frame frequency of 100 fps, a median SNR of 63.59 dB, and an accuracy of 95.39% when using a 0.98 mA sinusoidal current signal at 50 kHz. EIT image reconstruction shows that the proposed system can distinguish impedance changes in the saline phantom. Additionally, by utilizing the global impedance (GI) index and the agar phantoms, the EIT-PSoC system can detect changes in volume and conductivity, making this system a promising alternative for monitoring the volume and conductivity of biological fluids.

Abstract Image

在芯片上可编程系统上实现的八通道高速电阻抗断层扫描装置
本研究提出一种基于片上可编程系统(PSoc)的电阻抗断层扫描(EIT)装置。EIT-PSoC系统使用两个PSoC 5LP平台实现。电阻式模体用于研究帧频(fps)、精度(Ac)和信噪比(SNR)。盐水模体,以及导电和非导电物体,被用来评估系统检测阻抗分布变化的能力。最后,使用四个琼脂模型模拟人体下骨盆的介电特性,从而评估EIT-PSoC系统对流体体积和电导率变化的响应性能。实验表明,当使用0.98 mA的正弦电流信号在50 kHz时,EIT-PSoC系统的帧频率为100 fps,中位信噪比为63.59 dB,精度为95.39%。EIT图像重建结果表明,该系统能够识别生理盐水模体的阻抗变化。此外,通过利用全局阻抗(GI)指数和琼脂幻影,EIT-PSoC系统可以检测体积和电导率的变化,使该系统成为监测生物流体体积和电导率的有希望的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HardwareX
HardwareX Engineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍: HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信