Advances in non-thermal and electrochemical CO2 conversion technologies towards net-zero emissions

IF 6.5 Q2 ENGINEERING, ENVIRONMENTAL
Aldair Etmar Garcia , Raynard Christianson Sanito , Mengyao Gao , Steven S.C. Chuang , Luthfiyyah Annisa Nur Azizah
{"title":"Advances in non-thermal and electrochemical CO2 conversion technologies towards net-zero emissions","authors":"Aldair Etmar Garcia ,&nbsp;Raynard Christianson Sanito ,&nbsp;Mengyao Gao ,&nbsp;Steven S.C. Chuang ,&nbsp;Luthfiyyah Annisa Nur Azizah","doi":"10.1016/j.clet.2025.100944","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating challenges posed by extreme climate change and the rapid greenhouse effect have heightened stress and urgency among governments, researchers, and the public. Greenhouse gas (GHG) emissions, particularly carbon dioxide (CO<sub>2</sub>), have significantly contributed to rising atmospheric temperatures, with agriculture, forestry, and industrial activities accounting for 22 % and 17 % of global emissions, respectively. In 2022, global GHG emissions reached 53.8 Gt CO<sub>2</sub>eq, underscoring the critical need for net-zero technologies and a circular carbon economy. This review systematically evaluates the efficiencies of non-thermal and electrochemical CO<sub>2</sub> conversion technologies, including plasma, artificial photosynthesis, and electrochemical methods, for achieving net-zero emissions. These advanced technologies offer promising pathways for converting CO<sub>2</sub> into value-added chemicals, such as syngas, methanol, and formic acid, while reducing atmospheric CO<sub>2</sub> concentrations. However, upscaling these technologies from laboratory to industrial scales presents significant challenges, including high energy consumption, economic feasibility, and environmental impacts. The review highlights the mechanisms of CO<sub>2</sub> conversion, economic considerations, and the potential for industrial implementation. Priority research directions are identified, focusing on ecological footprints, green supply chains, and the integration of renewable energy sources. By addressing these challenges, non-thermal and electrochemical CO<sub>2</sub> conversion technologies can play a pivotal role in mitigating climate change and advancing toward a sustainable, circular carbon economy.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"28 ","pages":"Article 100944"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825000679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating challenges posed by extreme climate change and the rapid greenhouse effect have heightened stress and urgency among governments, researchers, and the public. Greenhouse gas (GHG) emissions, particularly carbon dioxide (CO2), have significantly contributed to rising atmospheric temperatures, with agriculture, forestry, and industrial activities accounting for 22 % and 17 % of global emissions, respectively. In 2022, global GHG emissions reached 53.8 Gt CO2eq, underscoring the critical need for net-zero technologies and a circular carbon economy. This review systematically evaluates the efficiencies of non-thermal and electrochemical CO2 conversion technologies, including plasma, artificial photosynthesis, and electrochemical methods, for achieving net-zero emissions. These advanced technologies offer promising pathways for converting CO2 into value-added chemicals, such as syngas, methanol, and formic acid, while reducing atmospheric CO2 concentrations. However, upscaling these technologies from laboratory to industrial scales presents significant challenges, including high energy consumption, economic feasibility, and environmental impacts. The review highlights the mechanisms of CO2 conversion, economic considerations, and the potential for industrial implementation. Priority research directions are identified, focusing on ecological footprints, green supply chains, and the integration of renewable energy sources. By addressing these challenges, non-thermal and electrochemical CO2 conversion technologies can play a pivotal role in mitigating climate change and advancing toward a sustainable, circular carbon economy.

Abstract Image

面向净零排放的非热和电化学CO2转化技术的进展
极端气候变化和迅速的温室效应带来的日益严峻的挑战,增加了政府、研究人员和公众的压力和紧迫性。温室气体(GHG)的排放,特别是二氧化碳(CO2)的排放对大气温度的上升起到了重要作用,农业、林业和工业活动分别占全球排放量的22%和17%。2022年,全球温室气体排放量达到538亿吨二氧化碳当量,凸显了对净零排放技术和循环碳经济的迫切需求。本文系统地评估了非热和电化学CO2转化技术的效率,包括等离子体、人工光合作用和电化学方法,以实现净零排放。这些先进的技术为将二氧化碳转化为增值化学品(如合成气、甲醇和甲酸)提供了有前途的途径,同时降低了大气中的二氧化碳浓度。然而,将这些技术从实验室扩展到工业规模面临着重大挑战,包括高能耗、经济可行性和环境影响。该审查强调了二氧化碳转化的机制、经济考虑和工业实施的潜力。确定了生态足迹、绿色供应链、可再生能源整合等优先研究方向。通过应对这些挑战,非热和电化学CO2转化技术可以在减缓气候变化和朝着可持续的循环碳经济发展方面发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信