Fast and automatic solar module geo-labeling for optimized large-scale photovoltaic systems inspection from UAV thermal imagery using deep learning segmentation

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
Zoubir Barraz , Imane Sebari , Nassim Lamrini , Kenza Ait El Kadi , Ibtihal Ait Abdelmoula
{"title":"Fast and automatic solar module geo-labeling for optimized large-scale photovoltaic systems inspection from UAV thermal imagery using deep learning segmentation","authors":"Zoubir Barraz ,&nbsp;Imane Sebari ,&nbsp;Nassim Lamrini ,&nbsp;Kenza Ait El Kadi ,&nbsp;Ibtihal Ait Abdelmoula","doi":"10.1016/j.clet.2025.101048","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaics (PV) are among the primary renewable and clean energy sources deployed globally, requiring frequent and efficient inspections to maintain optimal performance. Inspections conducted with unmanned aerial vehicles (UAVs) are optimized for large-scale installations, but they generate large datasets that are time-consuming to label manually. This study introduces a novel automatic geo-labeling approach of raw Infrared (IR) UAV imagery. It includes adaptive thresholding and edge refinement with photogrammetric data to automatically detect and geo-localize individual solar modules, without the need for manual annotation. The resulting auto-labeled images are then used to train and compare Deep Learning detectors for module-level segmentation. Among the tested models, Yolov7 demonstrated the best performance, achieving a mean Average Precision (mAP) of 98.33 %, with an inference time of only 15 ms, proving its suitability for real-time applications and integration within the inspection process. The dataset used for training includes UAV-based IR imagery from both ground-mounted and roof-mounted photovoltaic systems. The proposed approach accelerates the data preparation process and enables accurate on-site module localization, making it highly practical for automated PV inspection pipelines.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"28 ","pages":"Article 101048"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825001715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaics (PV) are among the primary renewable and clean energy sources deployed globally, requiring frequent and efficient inspections to maintain optimal performance. Inspections conducted with unmanned aerial vehicles (UAVs) are optimized for large-scale installations, but they generate large datasets that are time-consuming to label manually. This study introduces a novel automatic geo-labeling approach of raw Infrared (IR) UAV imagery. It includes adaptive thresholding and edge refinement with photogrammetric data to automatically detect and geo-localize individual solar modules, without the need for manual annotation. The resulting auto-labeled images are then used to train and compare Deep Learning detectors for module-level segmentation. Among the tested models, Yolov7 demonstrated the best performance, achieving a mean Average Precision (mAP) of 98.33 %, with an inference time of only 15 ms, proving its suitability for real-time applications and integration within the inspection process. The dataset used for training includes UAV-based IR imagery from both ground-mounted and roof-mounted photovoltaic systems. The proposed approach accelerates the data preparation process and enables accurate on-site module localization, making it highly practical for automated PV inspection pipelines.

Abstract Image

基于深度学习分割的无人机热图像快速自动太阳能组件地理标记优化大规模光伏系统检测
光伏(PV)是全球部署的主要可再生能源和清洁能源之一,需要频繁和有效的检查以保持最佳性能。使用无人机(uav)进行的检查针对大规模安装进行了优化,但它们生成的大型数据集需要花费大量时间来手动标记。提出了一种新的红外无人机原始图像自动地理标记方法。它包括自适应阈值和与摄影测量数据的边缘细化,以自动检测和地理定位单个太阳能模块,而无需手动注释。然后使用生成的自动标记图像来训练和比较深度学习检测器,以进行模块级分割。在测试的模型中,Yolov7表现出最好的性能,实现了98.33%的平均精度(mAP),推理时间仅为15 ms,证明了它适合实时应用和集成在检测过程中。用于训练的数据集包括来自地面安装和屋顶安装的光伏系统的基于无人机的红外图像。该方法加速了数据准备过程,实现了精确的现场模块定位,使其在自动化光伏检测管道中具有很高的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信