Parisa Khoshvaght , Amir Haider , Amir Masoud Rahmani , Shakiba Rajabi , Farhad Soleimanian Gharehchopogh , Jan Lansky , Mehdi Hosseinzadeh
{"title":"A self-supervised deep reinforcement learning for Zero-Shot Task scheduling in mobile edge computing environments","authors":"Parisa Khoshvaght , Amir Haider , Amir Masoud Rahmani , Shakiba Rajabi , Farhad Soleimanian Gharehchopogh , Jan Lansky , Mehdi Hosseinzadeh","doi":"10.1016/j.adhoc.2025.103977","DOIUrl":null,"url":null,"abstract":"<div><div>The rising need for swift response times makes it essential to use computing resources and network capacities efficiently at the edges of the networks. Mobile Edge Computing (MEC) handles this by processing user data near where it is generated rather than always relying on remote cloud centres. Yet, scheduling tasks under these conditions can be difficult because workloads shift, resources vary, and network performance is unstable. Traditional scheduling strategies often underperform in such rapidly changing settings, and even Deep Reinforcement Learning (DRL) solutions usually require extensive retraining whenever they encounter unfamiliar tasks. This paper proposes a self-supervised DRL framework for zero-shot task scheduling in MEC environments. The system integrates self-supervised learning to generate task embeddings, enabling the model to classify tasks into clusters based on resource requirements and execution complexity. A Soft Actor-Critic (SAC)-based scheduler then optimally assigns tasks to MEC nodes while dynamically adapting to network conditions. The training process combines contrastive learning for task representation and policy optimization to enhance scheduling decisions. Simulations demonstrate that the proposed approach reduces task completion time by up to 22 %, lowers energy consumption by 29 %, and improves latency by 18 % over baseline methods.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"178 ","pages":"Article 103977"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525002252","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The rising need for swift response times makes it essential to use computing resources and network capacities efficiently at the edges of the networks. Mobile Edge Computing (MEC) handles this by processing user data near where it is generated rather than always relying on remote cloud centres. Yet, scheduling tasks under these conditions can be difficult because workloads shift, resources vary, and network performance is unstable. Traditional scheduling strategies often underperform in such rapidly changing settings, and even Deep Reinforcement Learning (DRL) solutions usually require extensive retraining whenever they encounter unfamiliar tasks. This paper proposes a self-supervised DRL framework for zero-shot task scheduling in MEC environments. The system integrates self-supervised learning to generate task embeddings, enabling the model to classify tasks into clusters based on resource requirements and execution complexity. A Soft Actor-Critic (SAC)-based scheduler then optimally assigns tasks to MEC nodes while dynamically adapting to network conditions. The training process combines contrastive learning for task representation and policy optimization to enhance scheduling decisions. Simulations demonstrate that the proposed approach reduces task completion time by up to 22 %, lowers energy consumption by 29 %, and improves latency by 18 % over baseline methods.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.