Proxy model-driven optimization of CO2 operating condition and hydraulic fracturing design for maximizing EGR-CCS performance in the Duvernay shale formation, Canada

0 ENERGY & FUELS
Inwook Baek , Le Viet Nguyen , Namhwa Kim , Hyundon Shin , Thotsaphon Chaianansutcharit
{"title":"Proxy model-driven optimization of CO2 operating condition and hydraulic fracturing design for maximizing EGR-CCS performance in the Duvernay shale formation, Canada","authors":"Inwook Baek ,&nbsp;Le Viet Nguyen ,&nbsp;Namhwa Kim ,&nbsp;Hyundon Shin ,&nbsp;Thotsaphon Chaianansutcharit","doi":"10.1016/j.jgsce.2025.205731","DOIUrl":null,"url":null,"abstract":"<div><div>Shale gas is a prominent unconventional resource because of the advances in horizontal drilling and hydraulic fracturing, especially in North America. Shale gas reservoirs have also been considered for carbon capture and storage (CCS) to help mitigate CO<sub>2</sub> emissions and allow additional gas production. Enhanced gas recovery with CCS (EGR-CCS) injects CO<sub>2</sub> to displace methane (CH<sub>4</sub>), leveraging the higher adsorption capacity of CO<sub>2</sub> in shale. On the other hand, cumulative CH<sub>4</sub> production and CO<sub>2</sub> stored amount depend heavily on the timing of the injection, while economic factors such as natural gas prices and CO<sub>2</sub> tax credits also play a role—often overlooked in previous studies. This study developed a machine learning-based proxy model to predict the net present value (NPV) of an EGR-CCS project by integrating the CO<sub>2</sub> operating conditions, hydraulic fracturing designs, and economic factors. Based on data from the Duvernay shale reservoir, 200 scenarios were simulated to generate a training dataset. Five regression algorithms were tested. Of these five, extreme gradient boosting (XGB) yielded the highest accuracy, predicting CO<sub>2</sub> stored amount, cumulative CH<sub>4</sub> production, and NPV with R<sup>2</sup> &gt; 0.9. A complete factorial design was then implemented to optimize the EGR-CCS process under varying economic conditions. This comprehensive framework aids decision-making to maximize the economics of EGR-CCS, highlighting the potential of the Duvernay shale formation as a geological carbon storage target.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"143 ","pages":"Article 205731"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925001955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Shale gas is a prominent unconventional resource because of the advances in horizontal drilling and hydraulic fracturing, especially in North America. Shale gas reservoirs have also been considered for carbon capture and storage (CCS) to help mitigate CO2 emissions and allow additional gas production. Enhanced gas recovery with CCS (EGR-CCS) injects CO2 to displace methane (CH4), leveraging the higher adsorption capacity of CO2 in shale. On the other hand, cumulative CH4 production and CO2 stored amount depend heavily on the timing of the injection, while economic factors such as natural gas prices and CO2 tax credits also play a role—often overlooked in previous studies. This study developed a machine learning-based proxy model to predict the net present value (NPV) of an EGR-CCS project by integrating the CO2 operating conditions, hydraulic fracturing designs, and economic factors. Based on data from the Duvernay shale reservoir, 200 scenarios were simulated to generate a training dataset. Five regression algorithms were tested. Of these five, extreme gradient boosting (XGB) yielded the highest accuracy, predicting CO2 stored amount, cumulative CH4 production, and NPV with R2 > 0.9. A complete factorial design was then implemented to optimize the EGR-CCS process under varying economic conditions. This comprehensive framework aids decision-making to maximize the economics of EGR-CCS, highlighting the potential of the Duvernay shale formation as a geological carbon storage target.
代理模型驱动的CO2工况优化和水力压裂设计,以最大限度地提高加拿大Duvernay页岩地层EGR-CCS性能
由于水平钻井和水力压裂技术的进步,页岩气成为一种重要的非常规资源,尤其是在北美。页岩气储层也被考虑用于碳捕获和储存(CCS),以帮助减少二氧化碳排放并增加天然气产量。采用CCS技术提高采收率(EGR-CCS)利用页岩中较高的二氧化碳吸附能力,通过注入二氧化碳来取代甲烷(CH4)。另一方面,累积CH4产量和CO2储存量在很大程度上取决于注入的时间,而天然气价格和CO2税收抵免等经济因素也起着一定的作用,但在以往的研究中往往被忽视。本研究开发了一种基于机器学习的代理模型,通过综合二氧化碳操作条件、水力压裂设计和经济因素,预测EGR-CCS项目的净现值(NPV)。基于Duvernay页岩储层的数据,模拟了200个场景,生成了一个训练数据集。测试了五种回归算法。其中,极端梯度增强(XGB)预测CO2储存量、累积CH4产量和NPV的R2 >精度最高;0.9. 然后实施全因子设计来优化不同经济条件下的EGR-CCS工艺。这一综合框架有助于决策,以最大限度地提高EGR-CCS的经济效益,突出了Duvernay页岩地层作为地质碳储存目标的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信