{"title":"Pd@dppe@Fe3O4 as a magnetically recyclable catalyst for C–C bond formation: efficient phenylation of aldimines under mild conditions","authors":"Akram Ashouri, Somayeh Pourian, Behzad Nasiri, Arezu Moradi","doi":"10.1016/j.apsadv.2025.100796","DOIUrl":null,"url":null,"abstract":"<div><div>Novel separable nanomagnetic organometallic catalysts were synthesized by different processes through the immobilization of palladium salt on Fe<sub>3</sub>O<sub>4</sub> MNPs bearing a phosphine ligand. These nanomagnetic particles were characterized by energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD), and vibrating-sample magnetometer (VSM) analysis. The resulting Pd@dppe@Fe<sub>3</sub>O<sub>4</sub> nanocatalysts efficiently promoted the 1,2-addition of phenylboronic acid to aldimines, delivering the corresponding secondary amines in yields of up to 98 % after 10 h. This catalyst could be readily recovered by magnetic separation and reused without significant loss of activity.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"28 ","pages":"Article 100796"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Novel separable nanomagnetic organometallic catalysts were synthesized by different processes through the immobilization of palladium salt on Fe3O4 MNPs bearing a phosphine ligand. These nanomagnetic particles were characterized by energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD), and vibrating-sample magnetometer (VSM) analysis. The resulting Pd@dppe@Fe3O4 nanocatalysts efficiently promoted the 1,2-addition of phenylboronic acid to aldimines, delivering the corresponding secondary amines in yields of up to 98 % after 10 h. This catalyst could be readily recovered by magnetic separation and reused without significant loss of activity.