Flexible space–time models for extreme data

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Lorenzo Dell’Oro , Carlo Gaetan
{"title":"Flexible space–time models for extreme data","authors":"Lorenzo Dell’Oro ,&nbsp;Carlo Gaetan","doi":"10.1016/j.spasta.2025.100916","DOIUrl":null,"url":null,"abstract":"<div><div>Extreme value analysis is an essential methodology in the study of rare and extreme events, which hold significant interest in various fields, particularly in the context of environmental sciences. Models that employ the exceedances of values above suitably selected high thresholds possess the advantage of capturing the “sub-asymptotic” dependence of data. This paper presents an extension of spatial random scale mixture models to the spatio-temporal domain. A comprehensive framework for characterizing the dependence structure of extreme events across both dimensions is provided. Indeed, the model is capable of distinguishing between asymptotic dependence and independence, both in space and time, through the use of parametric inference. The high complexity of the likelihood function for the proposed model necessitates a simulation approach based on neural networks for parameter estimation, which leverages summaries of the sub-asymptotic dependence present in the data. The effectiveness of the model in assessing the limiting dependence structure of spatio-temporal processes is demonstrated through both simulation studies and an application to rainfall datasets.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"68 ","pages":"Article 100916"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000387","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme value analysis is an essential methodology in the study of rare and extreme events, which hold significant interest in various fields, particularly in the context of environmental sciences. Models that employ the exceedances of values above suitably selected high thresholds possess the advantage of capturing the “sub-asymptotic” dependence of data. This paper presents an extension of spatial random scale mixture models to the spatio-temporal domain. A comprehensive framework for characterizing the dependence structure of extreme events across both dimensions is provided. Indeed, the model is capable of distinguishing between asymptotic dependence and independence, both in space and time, through the use of parametric inference. The high complexity of the likelihood function for the proposed model necessitates a simulation approach based on neural networks for parameter estimation, which leverages summaries of the sub-asymptotic dependence present in the data. The effectiveness of the model in assessing the limiting dependence structure of spatio-temporal processes is demonstrated through both simulation studies and an application to rainfall datasets.
极端数据的灵活时空模型
极端值分析是研究罕见和极端事件的基本方法,在各个领域,特别是在环境科学的背景下,具有重要的意义。采用超出适当选择的高阈值的值的模型具有捕获数据的“次渐近”依赖性的优势。本文提出了一种将空间随机尺度混合模型扩展到时空域的方法。提供了表征极端事件在两个维度上的依赖结构的综合框架。事实上,通过使用参数推理,该模型能够在空间和时间上区分渐近依赖和独立。所提出模型的似然函数的高度复杂性需要基于神经网络进行参数估计的仿真方法,该方法利用数据中存在的次渐近依赖性的摘要。通过模拟研究和对降雨数据集的应用,证明了该模型在评估时空过程的极限依赖结构方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信