In-line product separation in a continuous oscillatory flow bioreactor as process intensification and product inhibition mitigation strategy

Judith Buchmaier , Theresa Plesch , Philipp Petermeier , Michael Egermeier , Bettina Muster-Slawitsch
{"title":"In-line product separation in a continuous oscillatory flow bioreactor as process intensification and product inhibition mitigation strategy","authors":"Judith Buchmaier ,&nbsp;Theresa Plesch ,&nbsp;Philipp Petermeier ,&nbsp;Michael Egermeier ,&nbsp;Bettina Muster-Slawitsch","doi":"10.1016/j.clce.2025.100191","DOIUrl":null,"url":null,"abstract":"<div><div>A Continuous Oscillatory Flow Bioreactor (COFB) was developed to enable the processing of lignocellulosic biomass at high solid loadings of up to 23 % and to allow for in-line product separation. The enzymatic saccharification conducted in the COFB yielded glucose concentrations of up to 50 g/L at a residence time of 3 h, corresponding to a yield of 0.2 g<sub>glucose</sub>/g<sub>substrate</sub> and an enzymatic productivity of 10 g<sub>glucose</sub>/g<sub>enzyme</sub>. The system incorporated precise quantification of the minimal energy input for oscillatory mixing, resulting in a specific energy demand of 6 Wh/kg<sub>glucose</sub>. Notably, the integration of in-line product separation enhanced enzymatic productivity by up to 40 %. Compared to conventional shaking flask experiments, process intensification in the COFB led to a 1.7-fold increase in volumetric productivity and a 1.6-fold reduction in residence time. These findings underscore the potential of the COFB as a scalable and energy-efficient platform for biorefinery applications.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100191"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Continuous Oscillatory Flow Bioreactor (COFB) was developed to enable the processing of lignocellulosic biomass at high solid loadings of up to 23 % and to allow for in-line product separation. The enzymatic saccharification conducted in the COFB yielded glucose concentrations of up to 50 g/L at a residence time of 3 h, corresponding to a yield of 0.2 gglucose/gsubstrate and an enzymatic productivity of 10 gglucose/genzyme. The system incorporated precise quantification of the minimal energy input for oscillatory mixing, resulting in a specific energy demand of 6 Wh/kgglucose. Notably, the integration of in-line product separation enhanced enzymatic productivity by up to 40 %. Compared to conventional shaking flask experiments, process intensification in the COFB led to a 1.7-fold increase in volumetric productivity and a 1.6-fold reduction in residence time. These findings underscore the potential of the COFB as a scalable and energy-efficient platform for biorefinery applications.
连续振荡流生物反应器中在线产物分离作为过程强化和产物抑制缓解策略
开发了一种连续振荡流生物反应器(COFB),可以在高达23%的高固体负荷下处理木质纤维素生物质,并允许在线产品分离。在COFB中进行的酶糖化在停留时间为3 h时,葡萄糖浓度高达50 g/L,对应于0.2葡萄糖/g底物和10葡萄糖/根酶的酶产率。该系统结合了振荡混合的最小能量输入的精确量化,导致比能量需求为6 Wh/kg葡萄糖。值得注意的是,在线产品分离的整合提高了酶的生产效率高达40%。与传统的摇瓶实验相比,COFB中的过程强化导致体积生产率提高1.7倍,停留时间减少1.6倍。这些发现强调了COFB作为生物炼制应用的可扩展和节能平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信