{"title":"A neurobiology perspective on the assembly of retinal vasculature from 2D to 3D","authors":"Mahima Bose , Mengya Zhao , Kenichi Toma , Xin Ye , Xin Duan","doi":"10.1016/j.conb.2025.103085","DOIUrl":null,"url":null,"abstract":"<div><div>The reciprocal regulation of the neural ensemble and vascular network within the mammalian central nervous system (CNS) is crucial for its development and functionality. Neuron-derived pro-angiogenic factors, such as growth factors, morphogens, and guidance cues, play a key role in forming stereotypical vascular architectures in the cortex, spinal cord, and cerebellum during development. Notably, the CNS vasculature forms distinct 3D lattice structures composed of laminar vascular networks interconnected by penetrating vessels. This contrasts with the more random 3D arborizations found in tumors. While the morphogen gradients for vascular network growth have been well-studied, the mechanisms contributing to vascular patterning and lattice maintenance in 3D are not fully understood. The mammalian retina provides an ideal model for studying these mechanisms, given its laminar organization of neurons and plexus organization of vessels, allowing for the investigation of 2D growth to 3D lattice establishment in a stepwise manner. Notably, recent studies have highlighted the roles of neurons and glia in retinal vascular patterning in 2D, as well as the involvement of neurotransmitters in regulating vascular growth. Additionally, direct neuron-to-vessel interactions have been found to contribute to 3D retinal vascular lattice formation. As emerging technologies provide new insights into retinal vascular assembly in 3D, understanding the developmental regulation and the physiological and pathophysiological effects of 3D lattice disruption remains a fertile field of research.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"93 ","pages":"Article 103085"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825001163","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The reciprocal regulation of the neural ensemble and vascular network within the mammalian central nervous system (CNS) is crucial for its development and functionality. Neuron-derived pro-angiogenic factors, such as growth factors, morphogens, and guidance cues, play a key role in forming stereotypical vascular architectures in the cortex, spinal cord, and cerebellum during development. Notably, the CNS vasculature forms distinct 3D lattice structures composed of laminar vascular networks interconnected by penetrating vessels. This contrasts with the more random 3D arborizations found in tumors. While the morphogen gradients for vascular network growth have been well-studied, the mechanisms contributing to vascular patterning and lattice maintenance in 3D are not fully understood. The mammalian retina provides an ideal model for studying these mechanisms, given its laminar organization of neurons and plexus organization of vessels, allowing for the investigation of 2D growth to 3D lattice establishment in a stepwise manner. Notably, recent studies have highlighted the roles of neurons and glia in retinal vascular patterning in 2D, as well as the involvement of neurotransmitters in regulating vascular growth. Additionally, direct neuron-to-vessel interactions have been found to contribute to 3D retinal vascular lattice formation. As emerging technologies provide new insights into retinal vascular assembly in 3D, understanding the developmental regulation and the physiological and pathophysiological effects of 3D lattice disruption remains a fertile field of research.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience