{"title":"Transverse vibration of an embedded nanotube made of functionally graded porous material based on NSGT","authors":"Murat Akpınar, Büşra Uzun, Mustafa Özgür Yaylı","doi":"10.1016/j.mechrescom.2025.104478","DOIUrl":null,"url":null,"abstract":"<div><div>The present work focuses on examining the transverse vibration behavior of a functionally graded porous nanotube resting on a Winkler–Pasternak elastic foundation, incorporating size-dependent effects and deformable boundary conditions. An analytical approach based on nonlocal strain gradient theory is adopted, which accounts for small-scale effects through two distinct size parameters—one with a strengthening effect and the other with a weakening effect. For the first time, deformable boundary conditions are considered the functionally graded porous nanotube in this context. An eigenvalue problem is formulated using the Stokes' transform, with constant coefficients assigned to the springs, along with Winkler–Pasternak foundation coefficients, material properties, and scale parameters. The resulting characteristic equation is solved analytically for various values of foundation stiffness, elastic spring parameters, strain gradient, and nonlocal effects to determine the system’s vibration frequencies. A comparative assessment with earlier research is conducted to validate the findings, confirming their accuracy. Then, the effects of small-scale parameters, volume fraction index, deformable boundaries, elastic foundation, rotary inertia and porosity density are discussed.</div></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":"148 ","pages":"Article 104478"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641325001119","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present work focuses on examining the transverse vibration behavior of a functionally graded porous nanotube resting on a Winkler–Pasternak elastic foundation, incorporating size-dependent effects and deformable boundary conditions. An analytical approach based on nonlocal strain gradient theory is adopted, which accounts for small-scale effects through two distinct size parameters—one with a strengthening effect and the other with a weakening effect. For the first time, deformable boundary conditions are considered the functionally graded porous nanotube in this context. An eigenvalue problem is formulated using the Stokes' transform, with constant coefficients assigned to the springs, along with Winkler–Pasternak foundation coefficients, material properties, and scale parameters. The resulting characteristic equation is solved analytically for various values of foundation stiffness, elastic spring parameters, strain gradient, and nonlocal effects to determine the system’s vibration frequencies. A comparative assessment with earlier research is conducted to validate the findings, confirming their accuracy. Then, the effects of small-scale parameters, volume fraction index, deformable boundaries, elastic foundation, rotary inertia and porosity density are discussed.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.