Rice seed integrity evaluation: Developing a rapid onsite system to check seed fraud using a portable NIR spectroscopic device coupled with smartphone technology

Ernest Teye , Charles Lloyd Yeboah Amuah , Vida Gyimah Boadu , Kwadwo Anokye Dompreh , Maxwell Darko Asante , Francis Padi Lamptey , Stephen Narh , Daniel Dzorkpe Gamenyah , George Oduro Nkansah , Selorm Akaba
{"title":"Rice seed integrity evaluation: Developing a rapid onsite system to check seed fraud using a portable NIR spectroscopic device coupled with smartphone technology","authors":"Ernest Teye ,&nbsp;Charles Lloyd Yeboah Amuah ,&nbsp;Vida Gyimah Boadu ,&nbsp;Kwadwo Anokye Dompreh ,&nbsp;Maxwell Darko Asante ,&nbsp;Francis Padi Lamptey ,&nbsp;Stephen Narh ,&nbsp;Daniel Dzorkpe Gamenyah ,&nbsp;George Oduro Nkansah ,&nbsp;Selorm Akaba","doi":"10.1016/j.foodp.2025.100059","DOIUrl":null,"url":null,"abstract":"<div><div>Rice seed integrity is critical in ensuring high yield and grain quality; however, seed fraud, particularly the misrepresentation of rice paddy (unhusked rice grain) as rice seed, is a growing concern that threatens sustainability efforts. This study investigates using a portable NIR spectroscopic device, combined with chemometric analysis, for rapid onsite identification of rice seed and paddy varieties for real-time verification of seed authenticity. A total of 280 rice samples, representing four varieties (Agra, Amankwatia, Legon 1, and Jasmine 85) across two categories (seeds and paddy), were analyzed. After applying various pre-processing techniques and principal component analysis (PCA), linear discriminant functions 1 and 2 successfully revealed distinct clustering patterns for both the varieties and categories (rice seed and paddy). Among the classification algorithms used, Random Forest (RF) achieved 100 % accuracy for rice seed identification and 97.38 % for paddy identification in the test sets. Support Vector Machine (SVM) demonstrated 98.15 % accuracy in distinguishing between rice seed and paddy for detecting seed fraud. These results suggest that a portable NIR device can reliably perform varietal identification and seed authenticity checks within the agricultural value chain. This technology has significant potential for use by seed inspectors, farmers, and regulatory officers, offering a non-destructive, real-time solution for the rice industry.</div></div>","PeriodicalId":100545,"journal":{"name":"Food Physics","volume":"2 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950069925000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rice seed integrity is critical in ensuring high yield and grain quality; however, seed fraud, particularly the misrepresentation of rice paddy (unhusked rice grain) as rice seed, is a growing concern that threatens sustainability efforts. This study investigates using a portable NIR spectroscopic device, combined with chemometric analysis, for rapid onsite identification of rice seed and paddy varieties for real-time verification of seed authenticity. A total of 280 rice samples, representing four varieties (Agra, Amankwatia, Legon 1, and Jasmine 85) across two categories (seeds and paddy), were analyzed. After applying various pre-processing techniques and principal component analysis (PCA), linear discriminant functions 1 and 2 successfully revealed distinct clustering patterns for both the varieties and categories (rice seed and paddy). Among the classification algorithms used, Random Forest (RF) achieved 100 % accuracy for rice seed identification and 97.38 % for paddy identification in the test sets. Support Vector Machine (SVM) demonstrated 98.15 % accuracy in distinguishing between rice seed and paddy for detecting seed fraud. These results suggest that a portable NIR device can reliably perform varietal identification and seed authenticity checks within the agricultural value chain. This technology has significant potential for use by seed inspectors, farmers, and regulatory officers, offering a non-destructive, real-time solution for the rice industry.
水稻种子完整性评估:利用便携式近红外光谱设备与智能手机技术相结合,开发一种快速的现场系统来检查种子欺诈
稻种完整性是确保高产和粮食品质的关键;然而,种子欺诈,特别是将稻谷(去壳的稻谷)谎称为水稻种子,是一个日益令人担忧的问题,威胁到可持续发展的努力。本研究利用便携式近红外光谱装置,结合化学计量分析,对水稻种子和水稻品种进行现场快速鉴定,实时验证种子的真伪。共280个水稻样本,代表四个品种(阿格拉、阿曼克瓦蒂亚、莱贡1号和茉莉85号),跨越两个类别(种子和水稻)进行分析。利用各种预处理技术和主成分分析(PCA),线性判别函数1和2成功地揭示了品种和类别(水稻种子和水稻)的不同聚类模式。在使用的分类算法中,随机森林(Random Forest, RF)对水稻种子的识别准确率为100 %,对水稻的识别准确率为97.38 %。支持向量机(SVM)对水稻种子和稻谷的识别准确率为98.15 %。这些结果表明,便携式近红外设备可以在农业价值链中可靠地进行品种识别和种子真实性检查。这项技术在种子检查员、农民和监管官员中具有巨大的应用潜力,为水稻行业提供了一种非破坏性的实时解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信