Phase Transformation of Needle-Like Fe-Co0.85Se to Hexagonal Fe-Co3O4 for Enhanced High-Current-Density Oxygen Evolution via Lattice Oxygen Redox

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-15 DOI:10.1002/smll.202505220
Yo Seob Won, Balakrishnan Kirubasankar, Hyung-Jin Kim, Ik Seon Kwon, Jae Woo Kim, Hayoung Ko, Young-Kyu Han, Soo Min Kim, Ki Kang Kim
{"title":"Phase Transformation of Needle-Like Fe-Co0.85Se to Hexagonal Fe-Co3O4 for Enhanced High-Current-Density Oxygen Evolution via Lattice Oxygen Redox","authors":"Yo Seob Won,&nbsp;Balakrishnan Kirubasankar,&nbsp;Hyung-Jin Kim,&nbsp;Ik Seon Kwon,&nbsp;Jae Woo Kim,&nbsp;Hayoung Ko,&nbsp;Young-Kyu Han,&nbsp;Soo Min Kim,&nbsp;Ki Kang Kim","doi":"10.1002/smll.202505220","DOIUrl":null,"url":null,"abstract":"<p>CoFe layered double hydroxide (LDH) has emerged as a promising oxygen evolution reaction (OER) electrocatalyst but exhibits low intrinsic activity and instability at high current densities, limiting industrial applicability. Herein, a phase-engineering strategy is reported to derive highly crystalline phase-transformed hexagonal Fe-Co<sub>3</sub>O<sub>4</sub> (PH-FCO) via selenization of CoFe LDH to form Fe-Co<sub>0.85</sub>Se, followed by electrochemical activation. Selective Se leaching during activation induces a morphological transition from needle-like Fe-Co<sub>0.85</sub>Se to hexagonal PH-FCO. The resulting PH-FCO achieves a high current density of 2 A cm<sup>−2</sup> and maintains stability for over 300 h at 500 mA cm<sup>−2</sup> and 1 A cm<sup>−2</sup>. Enhanced crystallinity formed during phase transformation effectively suppresses dissolution and preserves active catalytic sites. First-principles density functional theory calculations reveal that Fe incorporation promotes lattice oxygen oxidation, improves electronic conductivity, and reduces energy barriers. An anion exchange membrane water electrolyzer (AEMWE) incorporating PH-FCO as the anode and NiMo alloy as the cathode delivers 1.91 V at a current density of 1 A cm<sup>−2</sup> and maintains stable operation for over 150 h at 500 mA cm<sup>−2</sup>. Accelerated degradation tests exhibit minimal voltage drift, confirming the robustness of PH-FCO for industrial-scale alkaline water electrolysis.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 36","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202505220","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

CoFe layered double hydroxide (LDH) has emerged as a promising oxygen evolution reaction (OER) electrocatalyst but exhibits low intrinsic activity and instability at high current densities, limiting industrial applicability. Herein, a phase-engineering strategy is reported to derive highly crystalline phase-transformed hexagonal Fe-Co3O4 (PH-FCO) via selenization of CoFe LDH to form Fe-Co0.85Se, followed by electrochemical activation. Selective Se leaching during activation induces a morphological transition from needle-like Fe-Co0.85Se to hexagonal PH-FCO. The resulting PH-FCO achieves a high current density of 2 A cm−2 and maintains stability for over 300 h at 500 mA cm−2 and 1 A cm−2. Enhanced crystallinity formed during phase transformation effectively suppresses dissolution and preserves active catalytic sites. First-principles density functional theory calculations reveal that Fe incorporation promotes lattice oxygen oxidation, improves electronic conductivity, and reduces energy barriers. An anion exchange membrane water electrolyzer (AEMWE) incorporating PH-FCO as the anode and NiMo alloy as the cathode delivers 1.91 V at a current density of 1 A cm−2 and maintains stable operation for over 150 h at 500 mA cm−2. Accelerated degradation tests exhibit minimal voltage drift, confirming the robustness of PH-FCO for industrial-scale alkaline water electrolysis.

Abstract Image

针状Fe-Co0.85Se到六方Fe-Co3O4的相变增强了晶格氧氧化还原的高电流密度析氧
CoFe层状双氢氧化物(LDH)是一种很有前途的析氧反应(OER)电催化剂,但在高电流密度下表现出较低的内在活性和不稳定性,限制了工业应用。本文报道了一种相位工程策略,通过fe LDH硒化生成Fe-Co0.85Se,然后进行电化学活化,得到高结晶的六方Fe-Co3O4 (PH-FCO)。活化过程中的选择性硒浸出诱导了从针状Fe-Co0.85Se到六方PH-FCO的形态转变。所得到的PH-FCO实现了2 a cm-2的高电流密度,并在500 mA cm-2和1 a cm-2下保持300小时以上的稳定性。在相变过程中形成的增强结晶度有效地抑制了溶解并保留了活性催化位点。第一性原理密度泛函理论计算表明,铁的掺入促进了晶格氧氧化,提高了电子导电性,降低了能量垒。一种以PH-FCO为阳极,NiMo合金为阴极的阴离子交换膜水电解槽(AEMWE)在电流密度为1 a cm-2时可输出1.91 V,在500 mA cm-2时可稳定运行150小时以上。加速降解试验显示电压漂移最小,证实了PH-FCO在工业规模碱性电解中的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信