Solid-Like-Phase Confined Interfacial Polymerization: A Universal Platform for the Controlled 2D Growth of COP Membranes.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dongni Hu,Yida Wang,Xu Jiang,Lu Shao,Yan Wang
{"title":"Solid-Like-Phase Confined Interfacial Polymerization: A Universal Platform for the Controlled 2D Growth of COP Membranes.","authors":"Dongni Hu,Yida Wang,Xu Jiang,Lu Shao,Yan Wang","doi":"10.1002/adma.202508490","DOIUrl":null,"url":null,"abstract":"The scalable manufacturing of high-performance covalent organic framework/polymer (COF/COP) membranes faces persistent challenges due to interfacial instability in conventional liquid-liquid interfacial polymerization (LLIP). Here, a transformative solid-like-phase confined interfacial polymerization (SLCIP) strategy is developed that synergizes substrate hydration-induced confinement and functionalization-enabled monomer anchoring for synthesizing ultrathin two-dimensional (2D) COP membranes. By orchestrating the hydration barrier and solvent density modulation at functionalized substrates, SLCIP converts the dynamic liquid-liquid interface into a stable solid‒like phase confined interface. This interfacial confinement engineering enables the ambient synthesis of unique ultrathin COP membranes (<40 nm) via confined 2D reaction zones (1.2 nm thickness via MD simulations). The resulting membranes achieve a record water permeance (161 L m⁻2 h⁻¹ bar⁻¹, 3.7-fold enhancement over LLIP), with >98.8% Congo red rejection. Systematic implementation across three solvent systems and five structurally diverse amine monomers demonstrates the universality and chemical adaptability of SLCIP. Industrial scalability is validated through pilot-scale fabrication of A4-sized membranes with <5% spatial performance deviation. This work establishes an ambient-processable interfacial engineering paradigm, offering a sustainable platform for next-generation molecular separation technologies.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"109 1","pages":"e2508490"},"PeriodicalIF":27.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202508490","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The scalable manufacturing of high-performance covalent organic framework/polymer (COF/COP) membranes faces persistent challenges due to interfacial instability in conventional liquid-liquid interfacial polymerization (LLIP). Here, a transformative solid-like-phase confined interfacial polymerization (SLCIP) strategy is developed that synergizes substrate hydration-induced confinement and functionalization-enabled monomer anchoring for synthesizing ultrathin two-dimensional (2D) COP membranes. By orchestrating the hydration barrier and solvent density modulation at functionalized substrates, SLCIP converts the dynamic liquid-liquid interface into a stable solid‒like phase confined interface. This interfacial confinement engineering enables the ambient synthesis of unique ultrathin COP membranes (<40 nm) via confined 2D reaction zones (1.2 nm thickness via MD simulations). The resulting membranes achieve a record water permeance (161 L m⁻2 h⁻¹ bar⁻¹, 3.7-fold enhancement over LLIP), with >98.8% Congo red rejection. Systematic implementation across three solvent systems and five structurally diverse amine monomers demonstrates the universality and chemical adaptability of SLCIP. Industrial scalability is validated through pilot-scale fabrication of A4-sized membranes with <5% spatial performance deviation. This work establishes an ambient-processable interfacial engineering paradigm, offering a sustainable platform for next-generation molecular separation technologies.
固相限制界面聚合:COP膜控制二维生长的通用平台。
由于传统的液-液界面聚合(lip)中界面的不稳定性,高性能共价有机框架/聚合物(COF/COP)膜的规模化制造面临着持续的挑战。本研究开发了一种变革性的类固相约束界面聚合(SLCIP)策略,该策略将底物水化诱导的约束和功能化激活的单体锚定协同作用,用于合成超薄二维(2D) COP膜。通过在功能化底物上协调水合屏障和溶剂密度调制,SLCIP将动态液-液界面转化为稳定的类固相限制界面。这种界面约束工程使环境合成独特的超薄COP膜(98.8%刚果红吸收率)成为可能。系统地在三种溶剂体系和五种结构不同的胺单体上实现了SLCIP的通用性和化学适应性。工业可扩展性通过中试规模制造的a4尺寸的膜,小于5%的空间性能偏差进行验证。这项工作建立了一个环境可处理的界面工程范例,为下一代分子分离技术提供了一个可持续的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信