The Hourglass Simulation: A Catalog for the Roman High-latitude Time-domain Core Community Survey

B. M. Rose, M. Vincenzi, R. Hounsell, H. Qu, L. Aldoroty, D. Scolnic, R. Kessler, P. Macias, D. Brout, M. Acevedo, R. C. Chen, S. Gomez, E. Peterson, D. Rubin, M. Sako and the Roman Supernova Project Infrastructure Team
{"title":"The Hourglass Simulation: A Catalog for the Roman High-latitude Time-domain Core Community Survey","authors":"B. M. Rose, M. Vincenzi, R. Hounsell, H. Qu, L. Aldoroty, D. Scolnic, R. Kessler, P. Macias, D. Brout, M. Acevedo, R. C. Chen, S. Gomez, E. Peterson, D. Rubin, M. Sako and the Roman Supernova Project Infrastructure Team","doi":"10.3847/1538-4357/ade1d6","DOIUrl":null,"url":null,"abstract":"We present a simulation of the time-domain catalog for the Nancy Grace Roman Space Telescope’s High-Latitude Time-Domain Core Community Survey. This simulation, called the Hourglass simulation, uses the most up-to-date spectral energy distribution models and rate measurements for 10 extragalactic time-domain sources. We simulate these models through the design reference Roman Space Telescope survey: four filters per tier, a five-day cadence, over 2 yr, a wide tier of 19 deg2, and a deep tier of 4.2 deg2, with ∼20% of those areas also covered with prism observations. We find that a science-independent Roman time-domain catalog, assuming a signal-to-noise ratio at a max of >5, would have approximately 21,000 Type Ia supernovae, 40,000 core-collapse supernovae, around 70 superluminous supernovae, ∼35 tidal disruption events, three kilonovae, and possibly pair-instability supernovae. In total, Hourglass has over 64,000 transient objects, 11,000,000 photometric observations, and 500,000 spectra. Additionally, Hourglass is a useful data set to train machine learning classification algorithms. We show that SCONE is able to photometrically classify Type Ia supernovae with high precision (∼95%) to a z > 2. Finally, we present the first realistic simulations of non-Type Ia supernovae spectral time series data from Roman’s prism.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ade1d6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a simulation of the time-domain catalog for the Nancy Grace Roman Space Telescope’s High-Latitude Time-Domain Core Community Survey. This simulation, called the Hourglass simulation, uses the most up-to-date spectral energy distribution models and rate measurements for 10 extragalactic time-domain sources. We simulate these models through the design reference Roman Space Telescope survey: four filters per tier, a five-day cadence, over 2 yr, a wide tier of 19 deg2, and a deep tier of 4.2 deg2, with ∼20% of those areas also covered with prism observations. We find that a science-independent Roman time-domain catalog, assuming a signal-to-noise ratio at a max of >5, would have approximately 21,000 Type Ia supernovae, 40,000 core-collapse supernovae, around 70 superluminous supernovae, ∼35 tidal disruption events, three kilonovae, and possibly pair-instability supernovae. In total, Hourglass has over 64,000 transient objects, 11,000,000 photometric observations, and 500,000 spectra. Additionally, Hourglass is a useful data set to train machine learning classification algorithms. We show that SCONE is able to photometrically classify Type Ia supernovae with high precision (∼95%) to a z > 2. Finally, we present the first realistic simulations of non-Type Ia supernovae spectral time series data from Roman’s prism.
沙漏模拟:罗马高纬度时域核心社区调查目录
我们提出了一个模拟的时间域目录为南希格雷斯罗马空间望远镜的高纬度时间域核心社区调查。这个模拟被称为沙漏模拟,使用最新的光谱能量分布模型和10个河外时域源的速率测量。我们通过设计参考罗马太空望远镜调查来模拟这些模型:每层四个过滤器,5天的节奏,超过2年,宽层为19度2,深层为4.2度2,其中约20%的区域也被棱镜观测覆盖。我们发现,一个独立于科学的罗马时域目录,假设信噪比最大为bb50,将有大约21,000颗Ia型超新星,40,000颗核心坍缩超新星,大约70颗超亮超新星,~ 35颗潮汐破坏事件,3颗千新星,以及可能的对不稳定超新星。沙漏总共有超过64,000个瞬态物体,11,000,000个光度观测和500,000个光谱。此外,沙漏是训练机器学习分类算法的有用数据集。我们表明,SCONE能够以高精度(~ 95%)对Ia型超新星进行光度分类,精度为z >2。最后,我们提出了非Ia型超新星光谱时间序列数据的真实模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信